Prove the identity. \[ \tan \theta(\tan \theta+\cot \theta)=\sec ^{2} \theta \] To verify the identity, work each side separately until you obtain the same expression. Start with the left side. Choose the correct step and transform the expression according to the step chosen. \[ \tan \theta(\tan \theta+\cot \theta)=\square \] Distribute.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let's start by taking the left side of the identity: \[ \tan \theta(\tan \theta+\cot \theta) \] Now we can distribute \(\tan \theta\): \[ \tan \theta \cdot \tan \theta + \tan \theta \cdot \cot \theta \] This simplifies to: \[ \tan^2 \theta + 1 \] Since we know from the Pythagorean identity that \(\sec^2 \theta = 1 + \tan^2 \theta\), we can further simplify: \[ \tan^2 \theta + 1 = \sec^2 \theta \] Thus, we have shown that: \[ \tan \theta(\tan \theta+\cot \theta) = \sec^2 \theta \] So the identity is proved to be correct!
