Question
upstudy study bank question image url

5. Find the domain for the function \( f(x)=\frac{1-x^{2}}{x^{2}-4} \) \( \begin{array}{lll}\text { a) } R \backslash\{-2,2\} & \text { b) } R \backslash[-2,2] & \text { c) }[-2,2] \\ \text { d) }(-2,2) & \text { e) None of these }\end{array} \)

Ask by Vaughan Ayala. in Egypt
Nov 24,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

المجال هو \( \mathbb{R} \backslash \{-2, 2\} \). الإجابة الصحيحة هي الخيار (a).

Solution

لإيجاد مجال الدالة \( f(x) = \frac{1 - x^2}{x^2 - 4} \)، يجب علينا تحديد القيم التي تجعل المقام يساوي صفرًا، لأن الدالة غير معرفة عند تلك القيم. نبدأ بحل المعادلة: \[ x^2 - 4 = 0 \] نضيف 4 إلى كلا الجانبين: \[ x^2 = 4 \] نأخذ الجذر التربيعي لكلا الجانبين: \[ x = 2 \quad \text{أو} \quad x = -2 \] لذا، الدالة غير معرفة عند \( x = 2 \) و \( x = -2 \). وبالتالي، فإن مجال الدالة هو جميع الأعداد الحقيقية ما عدا القيمتين \( -2 \) و \( 2 \). لذا، المجال هو: \[ \mathbb{R} \backslash \{-2, 2\} \] الإجابة الصحيحة هي الخيار (a) \( \mathbb{R} \backslash \{-2, 2\} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find the domain of the function \( f(x)=\frac{1-x^{2}}{x^{2}-4} \), we need to identify the values of \( x \) that would make the denominator zero, as these values cannot be included in the domain. The denominator \( x^{2}-4 \) can be factored as \( (x-2)(x+2) \), which gives us the critical points \( x = -2 \) and \( x = 2 \). Therefore, the function is undefined at these points. Thus, the domain of the function is all real numbers except \( -2 \) and \( 2 \), which can be written as \( R \backslash \{-2, 2\} \). Therefore, the answer is option **a)** \( R \backslash \{-2, 2\} \). The final answer is **a)** \( R \backslash \{-2, 2\} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy