Question
upstudy study bank question image url

Solve by using the multiplication principle. \( \frac{3}{4}=-\frac{5}{12} y \) The multiplication principle states for any real numbers \( \mathrm{a}, \mathrm{b} \), and c , where \( \mathrm{c} \neq 0 \), the A. \( \mathrm{a}=\mathrm{b} \) is equivalent to \( \mathrm{a} \cdot \mathrm{c}=\mathrm{b} \cdot \mathrm{c} \). B. \( \mathrm{a}=\mathrm{b} \) is equivalent to \( \mathrm{b} \cdot \mathrm{a}=\mathrm{c} \). C. \( \mathrm{b}=\mathrm{c} \) is equivalent to \( \mathrm{a} \cdot \mathrm{c}=\mathrm{b} \cdot \mathrm{c} \). D. \( \mathrm{b}=\mathrm{c} \) is equivalent to \( \mathrm{b} \cdot \mathrm{c}=\mathrm{a} \).

Ask by Rose Moreno. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution to the equation \( \frac{3}{4} = -\frac{5}{12} y \) is \( y = -\frac{9}{5} \). The correct multiplication principle option is A: \( a = b \) is equivalent to \( a \cdot c = b \cdot c \).

Solution

To solve the equation \( \frac{3}{4} = -\frac{5}{12} y \) using the multiplication principle, we will follow these steps: 1. **Identify the equation**: We have \( \frac{3}{4} = -\frac{5}{12} y \). 2. **Apply the multiplication principle**: According to the multiplication principle, we can multiply both sides of the equation by a non-zero constant to maintain equality. In this case, we will multiply both sides by \( -\frac{12}{5} \) to isolate \( y \). 3. **Perform the multiplication**: \[ y = \frac{3}{4} \cdot \left(-\frac{12}{5}\right) \] 4. **Calculate the right side**: \[ y = -\frac{3 \cdot 12}{4 \cdot 5} \] 5. **Simplify the expression**: - First, calculate \( 3 \cdot 12 = 36 \). - Then, calculate \( 4 \cdot 5 = 20 \). - So, we have: \[ y = -\frac{36}{20} \] 6. **Reduce the fraction**: - The greatest common divisor of 36 and 20 is 4. - Dividing both the numerator and the denominator by 4 gives: \[ y = -\frac{9}{5} \] Thus, the solution to the equation \( \frac{3}{4} = -\frac{5}{12} y \) is: \[ y = -\frac{9}{5} \] ### Regarding the options: The multiplication principle states that if \( a = b \), then \( a \cdot c = b \cdot c \) for any \( c \neq 0 \). Therefore, the correct answer is: **A. \( a = b \) is equivalent to \( a \cdot c = b \cdot c \)**.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \frac{3}{4} = -\frac{5}{12}y \) using the multiplication principle, we start by isolating \( y \). We can do this by multiplying both sides of the equation by the reciprocal of \(-\frac{5}{12}\), which is \(-\frac{12}{5}\): \[ y = \frac{3}{4} \cdot -\frac{12}{5} \] Calculating this, we get: \[ y = -\frac{3 \cdot 12}{4 \cdot 5} = -\frac{36}{20} = -\frac{9}{5} \] Thus, the solution is \( y = -\frac{9}{5} \). Now, for a fun fact: this manipulation can be visualized as balancing a seesaw! When you multiply both sides by the same value (as long as it isn’t zero), you're ensuring that both sides maintain their "weight" equality—even if they seem to tilt differently at first! For practical purposes, understanding this multiplication principle is vital in everyday situations, like solving proportions in recipes, budgeting, or even calculating distances when using rates. Want to triple that cookie recipe? Just remember to multiply everything by three, so you don’t end up with a cookie disaster!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy