Pregunta
upstudy study bank question image url

Solve by using the multiplication principle. \( \frac{3}{4}=-\frac{5}{12} y \) The multiplication principle states for any real numbers \( \mathrm{a}, \mathrm{b} \), and c , where \( \mathrm{c} \neq 0 \), the A. \( \mathrm{a}=\mathrm{b} \) is equivalent to \( \mathrm{a} \cdot \mathrm{c}=\mathrm{b} \cdot \mathrm{c} \). B. \( \mathrm{a}=\mathrm{b} \) is equivalent to \( \mathrm{b} \cdot \mathrm{a}=\mathrm{c} \). C. \( \mathrm{b}=\mathrm{c} \) is equivalent to \( \mathrm{a} \cdot \mathrm{c}=\mathrm{b} \cdot \mathrm{c} \). D. \( \mathrm{b}=\mathrm{c} \) is equivalent to \( \mathrm{b} \cdot \mathrm{c}=\mathrm{a} \).

Ask by Rose Moreno. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the equation \( \frac{3}{4} = -\frac{5}{12} y \) is \( y = -\frac{9}{5} \). The correct multiplication principle option is A: \( a = b \) is equivalent to \( a \cdot c = b \cdot c \).

Solución

To solve the equation \( \frac{3}{4} = -\frac{5}{12} y \) using the multiplication principle, we will follow these steps: 1. **Identify the equation**: We have \( \frac{3}{4} = -\frac{5}{12} y \). 2. **Apply the multiplication principle**: According to the multiplication principle, we can multiply both sides of the equation by a non-zero constant to maintain equality. In this case, we will multiply both sides by \( -\frac{12}{5} \) to isolate \( y \). 3. **Perform the multiplication**: \[ y = \frac{3}{4} \cdot \left(-\frac{12}{5}\right) \] 4. **Calculate the right side**: \[ y = -\frac{3 \cdot 12}{4 \cdot 5} \] 5. **Simplify the expression**: - First, calculate \( 3 \cdot 12 = 36 \). - Then, calculate \( 4 \cdot 5 = 20 \). - So, we have: \[ y = -\frac{36}{20} \] 6. **Reduce the fraction**: - The greatest common divisor of 36 and 20 is 4. - Dividing both the numerator and the denominator by 4 gives: \[ y = -\frac{9}{5} \] Thus, the solution to the equation \( \frac{3}{4} = -\frac{5}{12} y \) is: \[ y = -\frac{9}{5} \] ### Regarding the options: The multiplication principle states that if \( a = b \), then \( a \cdot c = b \cdot c \) for any \( c \neq 0 \). Therefore, the correct answer is: **A. \( a = b \) is equivalent to \( a \cdot c = b \cdot c \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \frac{3}{4} = -\frac{5}{12}y \) using the multiplication principle, we start by isolating \( y \). We can do this by multiplying both sides of the equation by the reciprocal of \(-\frac{5}{12}\), which is \(-\frac{12}{5}\): \[ y = \frac{3}{4} \cdot -\frac{12}{5} \] Calculating this, we get: \[ y = -\frac{3 \cdot 12}{4 \cdot 5} = -\frac{36}{20} = -\frac{9}{5} \] Thus, the solution is \( y = -\frac{9}{5} \). Now, for a fun fact: this manipulation can be visualized as balancing a seesaw! When you multiply both sides by the same value (as long as it isn’t zero), you're ensuring that both sides maintain their "weight" equality—even if they seem to tilt differently at first! For practical purposes, understanding this multiplication principle is vital in everyday situations, like solving proportions in recipes, budgeting, or even calculating distances when using rates. Want to triple that cookie recipe? Just remember to multiply everything by three, so you don’t end up with a cookie disaster!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad