Question
upstudy study bank question image url

Evaluate the integral. \[ \int_{0}^{a} 9 x^{2} \sqrt{a^{2}-x^{2}} d x \] \( \square \)

Ask by Watkins Vargas. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The integral evaluates to \( \frac{9\pi a^4}{16} \).

Solution

We wish to evaluate   I = ∫₀ᵃ 9 x² √(a² − x²) dx. Step 1. Substitute x = a sinθ.   Then, dx = a cosθ dθ, and   √(a² − x²) = √(a² − a² sin²θ) = a cosθ.   Also, when x = 0, sinθ = 0 so θ = 0; and when x = a, sinθ = 1 so θ = π/2. Step 2. Rewrite the integral in terms of θ:   x² becomes (a sinθ)² = a² sin²θ. Thus,   I = ∫₀^(π/2) 9 (a² sin²θ) (a cosθ) (a cosθ dθ)     = 9 a⁴ ∫₀^(π/2) sin²θ cos²θ dθ. Step 3. Simplify the integrand using a trigonometric identity:   We know sinθ cosθ = ½ sin2θ, so:   sin²θ cos²θ = (½ sin2θ)² = ¼ sin²2θ. Thus,   I = 9 a⁴ (1/4) ∫₀^(π/2) sin²2θ dθ     = (9a⁴/4) ∫₀^(π/2) sin²2θ dθ. Step 4. Evaluate ∫₀^(π/2) sin²2θ dθ.   Use the identity: sin²u = (1 − cos2u)/2. Let u = 2θ so that:   sin²2θ = (1 − cos4θ)/2.   Then,   ∫₀^(π/2) sin²2θ dθ = (1/2) ∫₀^(π/2) (1 − cos4θ) dθ. Integrate:   ∫₀^(π/2) 1 dθ = (π/2),   ∫₀^(π/2) cos4θ dθ = [ (1/4) sin4θ ]₀^(π/2) = (1/4)[sin(2π) − sin0] = 0. Thus,   ∫₀^(π/2) sin²2θ dθ = (1/2)(π/2) = π/4. Step 5. Substitute back into I:   I = (9a⁴/4) * (π/4) = (9πa⁴)/16. Thus, the evaluated integral is   (9πa⁴)/16. So, the final answer is:   ∫₀ᵃ 9x² √(a² − x²) dx = (9πa⁴)/16.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the integral \[ I = \int_{0}^{a} 9 x^{2} \sqrt{a^{2}-x^{2}} \, dx, \] we can use the method of integration by parts or a trigonometric substitution. Here, we will use the trigonometric substitution \( x = a \sin(\theta) \), which gives us \( dx = a \cos(\theta) \, d\theta \). The limits change as follows: when \( x = 0 \), \( \theta = 0 \), and when \( x = a \), \( \theta = \frac{\pi}{2} \). Now substituting into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} 9 (a \sin(\theta))^2 \sqrt{a^2 - (a \sin(\theta))^2} \cdot a \cos(\theta) \, d\theta. \] Simplifying the square root, we get: \[ \sqrt{a^2 - a^2 \sin^2(\theta)} = \sqrt{a^2 (1 - \sin^2(\theta))} = a \cos(\theta). \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} 9 a^2 \sin^2(\theta) \cdot a \cos(\theta) \cdot a \cos(\theta) \, d\theta = 9 a^4 \int_{0}^{\frac{\pi}{2}} \sin^2(\theta) \cos^2(\theta) \, d\theta. \] Now we can use the identity \( \sin^2(\theta) \cos^2(\theta) = \frac{1}{4} \sin^2(2\theta) \): \[ I = 9 a^4 \cdot \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2(2\theta) \, d\theta. \] To find \( \int \sin^2(2\theta) \, d\theta \), we can use integration by parts or the formula: \[ \int \sin^2(x) \, dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C. \] So, \[ \int_{0}^{\frac{\pi}{2}} \sin^2(2\theta) \, d\theta = \left[ \frac{2\theta}{2} - \frac{\sin(2 \cdot 2\theta)}{4} \right]_{0}^{\frac{\pi}{2}} = \left[ \theta - \frac{\sin(4\theta)}{4} \right]_{0}^{\frac{\pi}{2}}. \] Evaluating this gives: \[ \left[ \frac{\pi}{2} - 0 \right] - \left[ 0 - 0 \right] = \frac{\pi}{2}. \] Substituting back, we have: \[ I = 9 a^4 \cdot \frac{1}{4} \cdot \frac{\pi}{2} = \frac{9 \pi a^4}{8}. \] Therefore, the value of the integral is: \[ \boxed{\frac{9 \pi a^4}{8}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy