Question
upstudy study bank question image url

a) \( A(4,5 ;-1), B(-3 ;-1) \) u \( C(-3 ; 5)= \)

Ask by Pritchard Peterson. in Turkey
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Центр масс треугольника с точками \( A(4, 5, -1) \), \( B(-3, -1, -1) \) и \( C(-3, 5, 0) \) находится в точке \( G\left(-\frac{2}{3}, 3, -\frac{2}{3}\right) \).

Solution

Давайте разберем вашу задачу. У нас есть три точки: \( A(4, 5; -1) \), \( B(-3; -1) \) и \( C(-3; 5) \). Поскольку вы не указали, что именно нужно сделать с этими точками, я предположу, что вы хотите найти координаты центра масс (центра тяжести) треугольника, образованного этими тремя точками. Центр масс треугольника можно найти по формуле: \[ G\left(x, y, z\right) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right) \] где \( (x_1, y_1, z_1) \), \( (x_2, y_2, z_2) \), и \( (x_3, y_3, z_3) \) — координаты точек \( A \), \( B \) и \( C \). Теперь подставим координаты: - \( A(4, 5, -1) \) - \( B(-3, -1, -1) \) - \( C(-3, 5, 0) \) Теперь найдем координаты центра масс \( G \): \[ G_x = \frac{4 + (-3) + (-3)}{3}, \quad G_y = \frac{5 + (-1) + 5}{3}, \quad G_z = \frac{-1 + (-1) + 0}{3} \] Теперь проведем вычисления. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(5+\left(-1\right)+5\right)}{3}\) - step1: Remove the parentheses: \(\frac{5+\left(-1\right)+5}{3}\) - step2: Remove the parentheses: \(\frac{5-1+5}{3}\) - step3: Calculate: \(\frac{9}{3}\) - step4: Reduce the numbers: \(\frac{3}{1}\) - step5: Calculate: \(3\) Calculate or simplify the expression \( (-1 + (-1) + 0) / 3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(-1+\left(-1\right)+0\right)}{3}\) - step1: Remove the parentheses: \(\frac{-1+\left(-1\right)+0}{3}\) - step2: Remove the parentheses: \(\frac{-1-1+0}{3}\) - step3: Remove 0: \(\frac{-1-1}{3}\) - step4: Subtract the numbers: \(\frac{-2}{3}\) - step5: Rewrite the fraction: \(-\frac{2}{3}\) Calculate or simplify the expression \( (4 + (-3) + (-3)) / 3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(4+\left(-3\right)+\left(-3\right)\right)}{3}\) - step1: Remove the parentheses: \(\frac{4+\left(-3\right)+\left(-3\right)}{3}\) - step2: Remove the parentheses: \(\frac{4-3-3}{3}\) - step3: Subtract the numbers: \(\frac{-2}{3}\) - step4: Rewrite the fraction: \(-\frac{2}{3}\) Теперь давайте подведем итоги вычислений для координат центра масс \( G \): 1. Для координаты \( G_x \): \[ G_x = \frac{4 + (-3) + (-3)}{3} = -\frac{2}{3} \approx -0.67 \] 2. Для координаты \( G_y \): \[ G_y = \frac{5 + (-1) + 5}{3} = 3 \] 3. Для координаты \( G_z \): \[ G_z = \frac{-1 + (-1) + 0}{3} = -\frac{2}{3} \approx -0.67 \] Таким образом, координаты центра масс \( G \) треугольника, образованного точками \( A \), \( B \) и \( C \), равны: \[ G\left(-\frac{2}{3}, 3, -\frac{2}{3}\right) \] Если у вас есть другие вопросы или задачи, пожалуйста, дайте знать!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the area of the triangle formed by the points A(4, 5; -1), B(-3; -1), and C(-3; 5), we can use the formula for the area of a triangle given by three vertices in the Cartesian coordinate system. The formula is: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Plugging in the coordinates: 1. A(4, 5) 2. B(-3, -1) 3. C(-3, 5) we have: \[ \text{Area} = \frac{1}{2} \left| 4(-1 - 5) + (-3)(5 - 5) + (-3)(5 - (-1)) \right| \] \[ = \frac{1}{2} \left| 4(-6) + (-3)(0) + (-3)(6) \right| \] \[ = \frac{1}{2} \left| -24 - 18 \right| \] \[ = \frac{1}{2} \left| -42 \right| = \frac{42}{2} = 21 \] So, the area of triangle ABC is \( \mathbf{21} \) square units. If this problem seems a bit tricky, remember that visualization can work wonders! Sketch the triangle on a graph paper to see how the points align and understand basic geometry better. Also, check out geometry resources or interactive software that can help in visualizing geometry concepts! Learning through visualization can make these concepts stick better and be a lot more fun!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy