Question
upstudy study bank question image url

Find the exact value of \( \cos 345^{\circ} \).

Ask by Wyatt Wells. in Puerto Rico
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The exact value of \( \cos 345^\circ \) is \( \frac{\sqrt{6} + \sqrt{2}}{4} \).

Solution

To find the exact value of \( \cos 345^\circ \), we can use the cosine subtraction formula. We can express \( 345^\circ \) as \( 360^\circ - 15^\circ \). Thus, we have: \[ \cos 345^\circ = \cos(360^\circ - 15^\circ) \] Using the cosine subtraction identity, we know that: \[ \cos(360^\circ - \theta) = \cos \theta \] Therefore, we can simplify: \[ \cos 345^\circ = \cos 15^\circ \] Next, we need to find \( \cos 15^\circ \). We can use the cosine subtraction formula again, expressing \( 15^\circ \) as \( 45^\circ - 30^\circ \): \[ \cos 15^\circ = \cos(45^\circ - 30^\circ) \] Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] we have: \[ \cos 15^\circ = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \] Now, we substitute the known values: - \( \cos 45^\circ = \frac{\sqrt{2}}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 45^\circ = \frac{\sqrt{2}}{2} \) - \( \sin 30^\circ = \frac{1}{2} \) Substituting these values into the equation gives: \[ \cos 15^\circ = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right) \] Calculating each term: \[ \cos 15^\circ = \frac{\sqrt{2} \cdot \sqrt{3}}{4} + \frac{\sqrt{2}}{4} \] Combining the terms: \[ \cos 15^\circ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Thus, we find: \[ \cos 345^\circ = \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} \] Therefore, the exact value of \( \cos 345^\circ \) is: \[ \boxed{\frac{\sqrt{6} + \sqrt{2}}{4}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find the exact value of \( \cos 345^{\circ} \), we can use the cosine subtraction formula. Note that \( 345^{\circ} = 360^{\circ} - 15^{\circ} \). Using the cosine subtraction identity: \[ \cos(360^{\circ} - \theta) = \cos \theta \] we can say: \[ \cos 345^{\circ} = \cos 15^{\circ} \] Next, we can find \( \cos 15^{\circ} \) using the cosine of a difference formula: \[ \cos(15^{\circ}) = \cos(45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} \] Plugging in the values: \[ \cos 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \quad \sin 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \sin 30^{\circ} = \frac{1}{2} \] Thus, \[ \cos 15^{\circ} = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Therefore, the exact value of \( \cos 345^{\circ} \) is: \[ \cos 345^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy