Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the exact value of \( \cos 345^{\circ} \), we can use the cosine subtraction formula. Note that \( 345^{\circ} = 360^{\circ} - 15^{\circ} \). Using the cosine subtraction identity: \[ \cos(360^{\circ} - \theta) = \cos \theta \] we can say: \[ \cos 345^{\circ} = \cos 15^{\circ} \] Next, we can find \( \cos 15^{\circ} \) using the cosine of a difference formula: \[ \cos(15^{\circ}) = \cos(45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} \] Plugging in the values: \[ \cos 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \quad \sin 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \sin 30^{\circ} = \frac{1}{2} \] Thus, \[ \cos 15^{\circ} = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Therefore, the exact value of \( \cos 345^{\circ} \) is: \[ \cos 345^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \]
