Question
upstudy study bank question image url

TEMA: Integral indefinida 1. Encuentre una función \( y=f(x) \) de modo que: a. Satisfaga la ecuación \( \frac{d y}{d x}=\frac{-1}{\sqrt{x}} \) y cumpla que \( f(16)=1 \). b. Cumpla que \( f^{\prime \prime}(x)=6, f^{\prime}(-1)=2 \) y \( f(-1)=0 \). c. Cumpla que \( f^{\prime \prime}(x)=x^{-3 / 2}, f^{\prime}(4)=2 \) y \( f(0)=0 \).

Ask by Potter Rodriquez. in Colombia
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( f(x) = -2\sqrt{x} + 9 \) b) \( f(x) = 3x^2 + 8x + 5 \) c) \( f(x) = -4\sqrt{x} + 3x \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

Para la primera parte, resolvemos la ecuación dada. La integral indefinida de la derivada \( \frac{d y}{d x} = \frac{-1}{\sqrt{x}} \) es \( y = -2\sqrt{x} + C \). Utilizando la condición \( f(16) = 1 \), encontramos que \( C = 1 + 2 \cdot 4 = 9 \). Por lo tanto, la función es \( f(x) = -2\sqrt{x} + 9 \). En el segundo caso, comenzamos integrando \( f^{\prime \prime}(x) = 6 \), lo que nos da \( f^{\prime}(x) = 6x + C_1 \). A continuación, aplicamos \( f^{\prime}(-1) = 2 \) para hallar \( C_1 = -4 \). Integrando nuevamente, conseguimos \( f(x) = 3x^2 - 4x + C_2 \), y con \( f(-1) = 0 \), encontramos \( C_2 = 1 \). Así, \( f(x) = 3x^2 - 4x + 1 \). Para la tercera parte, integramos \( f^{\prime \prime}(x) = x^{-3/2} \), lo que resulta en \( f^{\prime}(x) = -2x^{-1/2} + C_3 \). Usando \( f^{\prime}(4)=2 \), obtenemos \( C_3 = 4 \). Integrando de nuevo, tenemos \( f(x) = 4\sqrt{x} + C_4 \). Finalmente, con \( f(0)=0 \), se deduce que \( C_4 = 0 \). Por lo tanto, \( f(x) = 4\sqrt{x} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy