Answer
Here are the solutions for each pair of equations:
1. \( y = 3x^2 - 2x - 8 \) and \( y = 5x - 2 \):
- Solutions: \( (-\frac{2}{3}, -\frac{16}{3}) \) and \( (3, 13) \).
2. \( y = -5x^2 + 4x + 9 \) and \( y + 6x = 9 \):
- Solutions: \( (0, 9) \) and \( (2, -3) \).
3. \( y = \frac{3}{4}x^2 + 12 \) and \( 3x + 2y = 12 \):
- No real solutions.
4. \( y = -\frac{1}{2}x^2 - \frac{1}{2}x + 6 \) and \( x + 2y = 8 \):
- Solutions: \( (-2, 5) \) and \( (2, 3) \).
5. \( y = -\frac{1}{2}(x-1)(x+6) \) and \( 2x + 5y = 5 \):
- Solutions: \( (-5, 3) \) and \( \left(\frac{4}{5}, \frac{17}{25}\right) \).
6. \( y = x^2 - 5x + 4 \) and \( y - 2x + 6 = 0 \):
- Solutions: \( (2, -2) \) and \( (5, 4) \).
7. \( y = -x^2 - 5x + 6 \) and \( y = \frac{1}{2}(x+1)^2 - 2 \):
- Solutions: \( (-5, 6) \) and \( (1, 0) \).
8. \( y = (x-2)^2 - 3 \) and \( y = -\frac{1}{2}(x-5)^2 + 6 \):
- Solutions: \( (1, -2) \) and \( (5, 6) \).
9. \( y = -x^2 - x + 4 \) and \( y = 2(x-1)^2 - 4 \):
- Solutions: \( (-1, 4) \) and \( (2, -2) \).
If you need more help with any specific pair, let me know!
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=x^{2}-5x+4\\y-2x+6=0\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(x^{2}-5x+4-2x+6=0\)
- step2: Simplify:
\(x^{2}-7x+10=0\)
- step3: Factor the expression:
\(\left(x-5\right)\left(x-2\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&x-5=0\\&x-2=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=5\\&x=2\end{align}\)
- step6: Calculate:
\(x=5\cup x=2\)
- step7: Rearrange the terms:
\(\left\{ \begin{array}{l}x=5\\y=x^{2}-5x+4\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=x^{2}-5x+4\end{array}\right.\)
- step8: Calculate:
\(\left\{ \begin{array}{l}x=5\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=5\\y=4\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=5\\y=4\end{array}\right.\)
- step11: Rewrite:
\(\left(x,y\right) = \left(2,-2\right)\cup \left(x,y\right) = \left(5,4\right)\)
Solve the system of equations \( y=-\frac{1}{2} x^{2}-\frac{1}{2} x+6;x+2 y=8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-\frac{1}{2}x^{2}-\frac{1}{2}x+6\\x+2y=8\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(x+2\left(-\frac{1}{2}x^{2}-\frac{1}{2}x+6\right)=8\)
- step2: Simplify:
\(-x^{2}+12=8\)
- step3: Move the constant to the right side:
\(-x^{2}=8-12\)
- step4: Subtract the numbers:
\(-x^{2}=-4\)
- step5: Change the signs:
\(x^{2}=4\)
- step6: Simplify the expression:
\(x=\pm \sqrt{4}\)
- step7: Simplify:
\(x=\pm 2\)
- step8: Separate into possible cases:
\(x=2\cup x=-2\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=2\\y=-\frac{1}{2}x^{2}-\frac{1}{2}x+6\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=-\frac{1}{2}x^{2}-\frac{1}{2}x+6\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=5\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-2\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-2\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=3\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-2,5\right)\cup \left(x,y\right) = \left(2,3\right)\)
Solve the system of equations \( y=-5 x^{2}+4 x+9;y+6 x=9 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-5x^{2}+4x+9\\y+6x=9\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(-5x^{2}+4x+9+6x=9\)
- step2: Add the terms:
\(-5x^{2}+10x+9=9\)
- step3: Cancel equal terms:
\(-5x^{2}+10x=0\)
- step4: Factor the expression:
\(-5x\left(x-2\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&-5x=0\\&x-2=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=0\\&x=2\end{align}\)
- step7: Calculate:
\(x=0\cup x=2\)
- step8: Rearrange the terms:
\(\left\{ \begin{array}{l}x=0\\y=-5x^{2}+4x+9\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-5x^{2}+4x+9\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=0\\y=9\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-3\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}x=0\\y=9\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-3\end{array}\right.\)
- step11: Rewrite:
\(\left(x,y\right) = \left(0,9\right)\cup \left(x,y\right) = \left(2,-3\right)\)
Solve the system of equations \( y=-x^{2}-x+4;y=2(x-1)^{2}-4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-x^{2}-x+4\\y=2\left(x-1\right)^{2}-4\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(-x^{2}-x+4=2\left(x-1\right)^{2}-4\)
- step2: Simplify:
\(-x^{2}-x+4=2x^{2}-4x-2\)
- step3: Move the expression to the left side:
\(-x^{2}-x+4-\left(2x^{2}-4x-2\right)=0\)
- step4: Calculate:
\(-3x^{2}+3x+6=0\)
- step5: Factor the expression:
\(-3\left(x-2\right)\left(x+1\right)=0\)
- step6: Divide the terms:
\(\left(x-2\right)\left(x+1\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&x-2=0\\&x+1=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=2\\&x=-1\end{align}\)
- step9: Calculate:
\(x=2\cup x=-1\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=2\\y=-x^{2}-x+4\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=-x^{2}-x+4\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=4\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-2\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-1,4\right)\cup \left(x,y\right) = \left(2,-2\right)\)
Solve the system of equations \( y=3 x^{2}-2 x-8;y=5 x-2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=3x^{2}-2x-8\\y=5x-2\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(3x^{2}-2x-8=5x-2\)
- step2: Move the expression to the left side:
\(3x^{2}-2x-8-\left(5x-2\right)=0\)
- step3: Subtract the terms:
\(3x^{2}-7x-6=0\)
- step4: Factor the expression:
\(\left(x-3\right)\left(3x+2\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&x-3=0\\&3x+2=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=3\\&x=-\frac{2}{3}\end{align}\)
- step7: Calculate:
\(x=3\cup x=-\frac{2}{3}\)
- step8: Rearrange the terms:
\(\left\{ \begin{array}{l}x=3\\y=3x^{2}-2x-8\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2}{3}\\y=3x^{2}-2x-8\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=3\\y=13\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2}{3}\\y=-\frac{16}{3}\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{2}{3}\\y=-\frac{16}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=13\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{2}{3}\\y=-\frac{16}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=13\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-\frac{2}{3},-\frac{16}{3}\right)\cup \left(x,y\right) = \left(3,13\right)\)
Solve the system of equations \( y=\frac{3}{4} x^{2}+12;3 x+2 y=12 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\frac{3}{4}x^{2}+12\\3x+2y=12\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(3x+2\left(\frac{3}{4}x^{2}+12\right)=12\)
- step2: Expand the expression:
\(3x+\frac{3}{2}x^{2}+24=12\)
- step3: Move the expression to the left side:
\(3x+\frac{3}{2}x^{2}+24-12=0\)
- step4: Subtract the numbers:
\(3x+\frac{3}{2}x^{2}+12=0\)
- step5: Rewrite in standard form:
\(\frac{3}{2}x^{2}+3x+12=0\)
- step6: Multiply both sides:
\(2\left(\frac{3}{2}x^{2}+3x+12\right)=2\times 0\)
- step7: Calculate:
\(3x^{2}+6x+24=0\)
- step8: Solve using the quadratic formula:
\(x=\frac{-6\pm \sqrt{6^{2}-4\times 3\times 24}}{2\times 3}\)
- step9: Simplify the expression:
\(x=\frac{-6\pm \sqrt{6^{2}-4\times 3\times 24}}{6}\)
- step10: Simplify the expression:
\(x=\frac{-6\pm \sqrt{-252}}{6}\)
- step11: The expression is undefined:
\(x \notin \mathbb{R}\)
- step12: The system of equations has no solution in the set of real numbers:
\(\left(x,y\right) \notin \mathbb{R}^{2}\)
- step13: Alternative Form:
\(\textrm{No real solution}\)
Solve the system of equations \( y=-\frac{1}{2}(x-1)(x+6);2 x+5 y=5 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-\frac{1}{2}\left(x-1\right)\left(x+6\right)\\2x+5y=5\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}y=\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+6\right)\\2x+5y=5\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(2x+5\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+6\right)=5\)
- step3: Simplify:
\(-\frac{21}{2}x-\frac{5}{2}x^{2}+15=5\)
- step4: Move the expression to the left side:
\(-\frac{21}{2}x-\frac{5}{2}x^{2}+15-5=0\)
- step5: Subtract the numbers:
\(-\frac{21}{2}x-\frac{5}{2}x^{2}+10=0\)
- step6: Factor the expression:
\(\frac{1}{2}\left(-x-5\right)\left(5x-4\right)=0\)
- step7: Divide the terms:
\(\left(-x-5\right)\left(5x-4\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&-x-5=0\\&5x-4=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=-5\\&x=\frac{4}{5}\end{align}\)
- step10: Calculate:
\(x=-5\cup x=\frac{4}{5}\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-5\\y=\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+6\right)\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{4}{5}\\y=\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+6\right)\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{4}{5}\\y=\frac{17}{25}\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{4}{5}\\y=\frac{17}{25}\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-5,3\right)\cup \left(x,y\right) = \left(\frac{4}{5},\frac{17}{25}\right)\)
Solve the system of equations \( y=-x^{2}-5 x+6;y=\frac{1}{2}(x+1)^{2}-2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-x^{2}-5x+6\\y=\frac{1}{2}\left(x+1\right)^{2}-2\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(-x^{2}-5x+6=\frac{1}{2}\left(x+1\right)^{2}-2\)
- step2: Simplify:
\(-x^{2}-5x+6=\frac{1}{2}x^{2}+x-\frac{3}{2}\)
- step3: Move the expression to the left side:
\(-x^{2}-5x+6-\left(\frac{1}{2}x^{2}+x-\frac{3}{2}\right)=0\)
- step4: Calculate:
\(-\frac{3}{2}x^{2}-6x+\frac{15}{2}=0\)
- step5: Factor the expression:
\(-\frac{3}{2}\left(x-1\right)\left(x+5\right)=0\)
- step6: Divide the terms:
\(\left(x-1\right)\left(x+5\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&x-1=0\\&x+5=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=1\\&x=-5\end{align}\)
- step9: Calculate:
\(x=1\cup x=-5\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=1\\y=-x^{2}-5x+6\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=-x^{2}-5x+6\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=6\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=6\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=0\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=6\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=0\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-5,6\right)\cup \left(x,y\right) = \left(1,0\right)\)
Solve the system of equations \( y=(x-2)^{2}-3;y=-\frac{1}{2}(x-5)^{2}+6 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\left(x-2\right)^{2}-3\\y=-\frac{1}{2}\left(x-5\right)^{2}+6\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(\left(x-2\right)^{2}-3=-\frac{1}{2}\left(x-5\right)^{2}+6\)
- step2: Simplify:
\(\left(x-2\right)^{2}-3=-\frac{1}{2}x^{2}+5x-\frac{13}{2}\)
- step3: Move the expression to the left side:
\(\left(x-2\right)^{2}-3-\left(-\frac{1}{2}x^{2}+5x-\frac{13}{2}\right)=0\)
- step4: Subtract the terms:
\(\left(x-2\right)^{2}+\frac{7}{2}+\frac{1}{2}x^{2}-5x=0\)
- step5: Calculate:
\(\frac{3}{2}x^{2}-9x+\frac{15}{2}=0\)
- step6: Factor the expression:
\(\frac{3}{2}\left(x-5\right)\left(x-1\right)=0\)
- step7: Divide the terms:
\(\left(x-5\right)\left(x-1\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&x-5=0\\&x-1=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=5\\&x=1\end{align}\)
- step10: Calculate:
\(x=5\cup x=1\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=5\\y=\left(x-2\right)^{2}-3\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=\left(x-2\right)^{2}-3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=5\\y=6\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=5\\y=6\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=5\\y=6\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(1,-2\right)\cup \left(x,y\right) = \left(5,6\right)\)
Here are the solutions for each pair of equations:
1. For the equations \( y = 3x^2 - 2x - 8 \) and \( y = 5x - 2 \):
- The solutions are \( (x,y) = \left(-\frac{2}{3}, -\frac{16}{3}\right) \) and \( (x,y) = (3, 13) \).
2. For the equations \( y = -5x^2 + 4x + 9 \) and \( y + 6x = 9 \):
- The solutions are \( (x,y) = (0, 9) \) and \( (x,y) = (2, -3) \).
3. For the equations \( y = \frac{3}{4}x^2 + 12 \) and \( 3x + 2y = 12 \):
- There are no real solutions.
4. For the equations \( y = -\frac{1}{2}x^2 - \frac{1}{2}x + 6 \) and \( x + 2y = 8 \):
- The solutions are \( (x,y) = (-2, 5) \) and \( (x,y) = (2, 3) \).
5. For the equations \( y = -\frac{1}{2}(x-1)(x+6) \) and \( 2x + 5y = 5 \):
- The solutions are \( (x,y) = (-5, 3) \) and \( (x,y) = \left(\frac{4}{5}, \frac{17}{25}\right) \).
6. For the equations \( y = x^2 - 5x + 4 \) and \( y - 2x + 6 = 0 \):
- The solutions are \( (x,y) = (2, -2) \) and \( (x,y) = (5, 4) \).
7. For the equations \( y = -x^2 - 5x + 6 \) and \( y = \frac{1}{2}(x+1)^2 - 2 \):
- The solutions are \( (x,y) = (-5, 6) \) and \( (x,y) = (1, 0) \).
8. For the equations \( y = (x-2)^2 - 3 \) and \( y = -\frac{1}{2}(x-5)^2 + 6 \):
- The solutions are \( (x,y) = (1, -2) \) and \( (x,y) = (5, 6) \).
9. For the equations \( y = -x^2 - x + 4 \) and \( y = 2(x-1)^2 - 4 \):
- The solutions are \( (x,y) = (-1, 4) \) and \( (x,y) = (2, -2) \).
If you need further assistance or explanations for any specific pair, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution