Answer
Simplified expressions:
(a) \( 2^{x} \) (for \( x \neq 0 \))
(b) \( 2^{x} - 1 \)
(c) \( 3^{x} + 3 \) (for \( x \neq 1 \))
Additional Expression: \( -\left(2^{x} + 4\right) \) (for \( x \neq 2 \))
Solution
Let's simplify each of the given expressions step by step.
---
### (a) \(\displaystyle \frac{2^{2x} - 2^{x}}{2^{x} - 1}\)
**Step 1:** Factor the numerator.
\[
2^{2x} - 2^{x} = 2^{x} \cdot 2^{x} - 2^{x} = 2^{x}(2^{x} - 1)
\]
**Step 2:** Substitute back into the fraction.
\[
\frac{2^{x}(2^{x} - 1)}{2^{x} - 1}
\]
**Step 3:** Cancel out the common term \((2^{x} - 1)\).
\[
= 2^{x} \quad \text{(provided \(2^{x} \neq 1\), i.e., \(x \neq 0\))}
\]
---
### (b) \(\displaystyle \frac{2^{2x} - 1}{2^{x} + 1}\)
**Step 1:** Recognize the numerator as a difference of squares.
\[
2^{2x} - 1 = (2^{x})^2 - 1^2 = (2^{x} - 1)(2^{x} + 1)
\]
**Step 2:** Substitute back into the fraction.
\[
\frac{(2^{x} - 1)(2^{x} + 1)}{2^{x} + 1}
\]
**Step 3:** Cancel out the common term \((2^{x} + 1)\).
\[
= 2^{x} - 1
\]
---
### (c) \(\displaystyle \frac{9^{x} - 9}{3^{x} - 3}\)
**Step 1:** Rewrite the terms with a common base.
\[
9^{x} = (3^2)^{x} = 3^{2x} \quad \text{and} \quad 9 = 3^2
\]
**Step 2:** Factor the numerator as a difference of squares.
\[
3^{2x} - 3^2 = (3^{x})^2 - 3^2 = (3^{x} - 3)(3^{x} + 3)
\]
**Step 3:** Substitute back into the fraction.
\[
\frac{(3^{x} - 3)(3^{x} + 3)}{3^{x} - 3}
\]
**Step 4:** Cancel out the common term \((3^{x} - 3)\).
\[
= 3^{x} + 3 \quad \text{(provided \(3^{x} \neq 3\), i.e., \(x \neq 1\))}
\]
---
### Additional Expression: \(\displaystyle \frac{16 - 4^{x}}{2^{x} - 4}\)
**Step 1:** Rewrite the terms with a common base.
\[
4^{x} = (2^2)^{x} = 2^{2x} \quad \text{and} \quad 16 = 2^4
\]
**Step 2:** Factor the numerator.
\[
16 - 4^{x} = 2^4 - 2^{2x} = -(2^{2x} - 2^4) = -\left(2^{x} - 4\right)\left(2^{x} + 4\right)
\]
**Step 3:** Substitute back into the fraction.
\[
\frac{-(2^{x} - 4)(2^{x} + 4)}{2^{x} - 4}
\]
**Step 4:** Cancel out the common term \((2^{x} - 4)\).
\[
= -\left(2^{x} + 4\right)
\]
---
### Summary of Simplified Expressions
1. **(a)** \(\displaystyle \frac{2^{2x} - 2^{x}}{2^{x} - 1} = 2^{x}\) \quad (for \(x \neq 0\))
2. **(b)** \(\displaystyle \frac{2^{2x} - 1}{2^{x} + 1} = 2^{x} - 1\)
3. **(c)** \(\displaystyle \frac{9^{x} - 9}{3^{x} - 3} = 3^{x} + 3\)
4. **Additional:** \(\displaystyle \frac{16 - 4^{x}}{2^{x} - 4} = -\left(2^{x} + 4\right)\)
---
These simplifications assume that the denominators are not equal to zero, which imposes the following restrictions on \(x\):
- For **(a)**: \(2^{x} \neq 1 \Rightarrow x \neq 0\)
- For **(c)**: \(3^{x} \neq 3 \Rightarrow x \neq 1\)
- For the **additional expression**: \(2^{x} \neq 4 \Rightarrow x \neq 2\)
If you have any further questions or need additional assistance, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution