Question
upstudy study bank question image url

4) Find the integers that are upper and lower bounds for the real xeros of the polynomial. (25 points) \( P(x)=2 x^{3}+5 x^{2}-8 x-7 \)

Ask by Valdez Wells. in the United States
Jan 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Los límites enteros para las raíces reales del polinomio son -4 como límite inferior y 2 como límite superior.

Solution

Para encontrar los límites enteros inferiores y superiores para las raíces reales del polinomio \( P(x) = 2x^{3} + 5x^{2} - 8x - 7 \), seguimos los siguientes pasos: 1. **Determinar los límites utilizando el Teorema de los Límites de Cauchy:** - **Límite Superior:** \[ 1 + \frac{\text{máximo de los coeficientes absolutos de los términos de menor grado}}{\text{coeficiente líder}} = 1 + \frac{8}{2} = 5 \] Sin embargo, buscando límites más ajustados, evaluamos \( P(x) \) en valores enteros menores: \[ P(2) = 2(2)^3 + 5(2)^2 - 8(2) - 7 = 16 + 20 - 16 - 7 = 13 > 0 \] \[ P(1) = 2(1)^3 + 5(1)^2 - 8(1) - 7 = 2 + 5 - 8 - 7 = -8 < 0 \] Por lo tanto, hay una raíz entre 1 y 2. Así, el límite superior entero más ajustado es **2**. - **Límite Inferior:** Evaluamos \( P(x) \) en valores enteros negativos: \[ P(-4) = 2(-4)^3 + 5(-4)^2 - 8(-4) - 7 = -128 + 80 + 32 - 7 = -23 < 0 \] \[ P(-3) = 2(-3)^3 + 5(-3)^2 - 8(-3) - 7 = -54 + 45 + 24 - 7 = 8 > 0 \] Por lo tanto, hay una raíz entre -4 y -3. Así, el límite inferior entero más ajustado es **-4**. 2. **Conclusión:** Las raíces reales del polinomio \( P(x) \) están contenidas entre los enteros **-4** y **2**. **Respuesta Final:** Los límites enteros son −4 como límite inferior y 2 como límite superior para las raíces reales del polinomio.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the upper and lower bounds for the real zeros of the polynomial \( P(x) = 2x^3 + 5x^2 - 8x - 7 \), you can use the Upper Bound Theorem and the Lower Bound Theorem. By applying synthetic division and examining the signs of the resulting coefficients, a value can be identified as an upper bound when dividing \( P(x) \) by \( x - c \) (where \( c \) is a positive number). Similarly, for the lower bound, you could use a negative divisor and look for alternating signs. For a bit of trial and error, after testing various integers, we find that \( x = -4 \) works as a lower bound (all positive coefficients) and \( x = 4 \) as an upper bound (coefficients remain non-negative). It’s always a good practice to test a few numbers to ensure you arrive at the correct bounds, and synthetic division is a trusty adventure in this realm!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy