Question
upstudy study bank question image url

Q. 1 \( 4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7 \times 6 \) का मान ज्ञात कीजिए। Ans 1. 219 2. 218 3. 229 4. 224 Q. 2 Using empirical formula, calculate the mode for the following data. 17, 20, 21, 18, 25, 28, 24, 22, 16, 24, 25, 24 Ans 1. 25 2. 25.8 3. 32 4. 30.6

Ask by Montgomery Mccoy. in India
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

- **Q. 1:** 219 - **Q. 2:** Mode is 24

Solution

Find the characteristics of these numbers by following steps: - step0: Find the mean: \(17,20,21,18,25,28,24,22,16,24,25,24\) - step1: Write the expression of mean: \(\textrm{mean}=\frac{17+20+21+18+25+28+24+22+16+24+25+24}{12}\) - step2: Calculate: \(\textrm{mean}=\frac{264}{12}\) - step3: Calculate: \(\textrm{mean}=22\) Calculate or simplify the expression \( 4^3-0^2+(22/2)^2-8+7*6 \). Calculate the value by following steps: - step0: Calculate: \(4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7\times 6\) - step1: Divide the terms: \(4^{3}-0^{2}+11^{2}-8+7\times 6\) - step2: Calculate: \(4^{3}-0+11^{2}-8+7\times 6\) - step3: Multiply the numbers: \(4^{3}-0+11^{2}-8+42\) - step4: Remove 0: \(4^{3}+11^{2}-8+42\) - step5: Evaluate the power: \(64+11^{2}-8+42\) - step6: Evaluate the power: \(64+121-8+42\) - step7: Calculate: \(219\) Find the least common multiple of \( 17,20,21,18,25,28,24,22,16,24,25,24 \) Find the least common multiple by following steps: - step0: Find the least common multiple by factorization: \(17,20,21,18,25,28,24,22,16,24,25,24\) - step1: Rewrite: \(\begin{align}&17\\&20\\&21\\&18\\&25\\&28\\&24\\&22\\&16\\&24\\&25\\&24\end{align}\) - step2: Factorization the number: \(\begin{align}&17=17\\&20=2\times 2\times 5\\&21=3\times 7\\&18=2\times 3\times 3\\&25=5\times 5\\&28=2\times 2\times 7\\&24=2\times 2\times 2\times 3\\&22=2\times 11\\&16=2\times 2\times 2\times 2\\&24=2\times 2\times 2\times 3\\&25=5\times 5\\&24=2\times 2\times 2\times 3\end{align}\) - step3: Find the least common multiple: \(11\times 17\times 2\times 2\times 2\times 2\times 3\times 3\times 5\times 5\times 7\) - step4: Rewrite the expression: \(11\times 17\times 2^{4}\times 3\times 3\times 5\times 5\times 7\) - step5: Multiply the terms: \(294525\times 2^{4}\) - step6: Evaluate the power: \(294525\times 16\) - step7: Multiply: \(4712400\) Let's solve the problems step by step. ### Q. 1 We need to calculate the expression: \[ 4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7 \times 6 \] 1. Calculate \(4^3\): \[ 4^3 = 64 \] 2. Calculate \(0^2\): \[ 0^2 = 0 \] 3. Calculate \(\frac{22}{2}\): \[ \frac{22}{2} = 11 \] 4. Calculate \(11^2\): \[ 11^2 = 121 \] 5. Calculate \(7 \times 6\): \[ 7 \times 6 = 42 \] Now, substitute these values back into the expression: \[ 64 - 0 + 121 - 8 + 42 \] Now, perform the calculations step by step: - \(64 + 121 = 185\) - \(185 - 8 = 177\) - \(177 + 42 = 219\) Thus, the answer for Q. 1 is **219**. ### Q. 2 To calculate the mode using the empirical formula for the given data: \[ 17, 20, 21, 18, 25, 28, 24, 22, 16, 24, 25, 24 \] 1. First, we need to find the frequency of each number: - 16: 1 - 17: 1 - 18: 1 - 20: 1 - 21: 1 - 22: 1 - 24: 3 - 25: 2 - 28: 1 From the frequency count, the number **24** appears the most frequently (3 times). Thus, the mode is **24**. However, since the options provided do not include 24, we can calculate the mean to see if it aligns with any of the options. The mean was calculated as: \[ \text{mean} = 22 \] Since the mode is not directly provided in the options, we can conclude that the mode is **24** based on the frequency analysis. ### Final Answers: - **Q. 1:** 219 - **Q. 2:** Mode is 24 (not listed in options).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

\( 4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7 \times 6 \) का मान ज्ञात करने के लिए, पहले गणना करें: \( 4^{3} = 64 \), \( 0^{2} = 0 \), \( \left(\frac{22}{2}\right)^{2} = 121 \), और \( 7 \times 6 = 42 \)। फिर सब आंकड़ों को जोड़कर और घटाकर अंतिम परिणाम प्राप्त करें: \( 64 - 0 + 121 - 8 + 42 = 219 \)। दूसरे सवाल का हल करने के लिए, मोड को निर्धारित करने के लिए, हम देख सकते हैं कि सबसे ज्यादा बार कौन सा मान मौजूद है। इस डेटा में संख्या 24 तीन बार है, जो अधिकतम आवृत्ति है। तो मोड होगा 24, लेकिन अगर हम अम्पिरिकल फॉर्मूला का प्रयोग करें तो मान थोड़ा अलग हो सकता है, हमें गिनती करनी होगी और फिर उचित विधि से मोड का निकाय निकालना होगा।

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy