Solution
Find the characteristics of these numbers by following steps:
- step0: Find the mean:
\(17,20,21,18,25,28,24,22,16,24,25,24\)
- step1: Write the expression of mean:
\(\textrm{mean}=\frac{17+20+21+18+25+28+24+22+16+24+25+24}{12}\)
- step2: Calculate:
\(\textrm{mean}=\frac{264}{12}\)
- step3: Calculate:
\(\textrm{mean}=22\)
Calculate or simplify the expression \( 4^3-0^2+(22/2)^2-8+7*6 \).
Calculate the value by following steps:
- step0: Calculate:
\(4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7\times 6\)
- step1: Divide the terms:
\(4^{3}-0^{2}+11^{2}-8+7\times 6\)
- step2: Calculate:
\(4^{3}-0+11^{2}-8+7\times 6\)
- step3: Multiply the numbers:
\(4^{3}-0+11^{2}-8+42\)
- step4: Remove 0:
\(4^{3}+11^{2}-8+42\)
- step5: Evaluate the power:
\(64+11^{2}-8+42\)
- step6: Evaluate the power:
\(64+121-8+42\)
- step7: Calculate:
\(219\)
Find the least common multiple of \( 17,20,21,18,25,28,24,22,16,24,25,24 \)
Find the least common multiple by following steps:
- step0: Find the least common multiple by factorization:
\(17,20,21,18,25,28,24,22,16,24,25,24\)
- step1: Rewrite:
\(\begin{align}&17\\&20\\&21\\&18\\&25\\&28\\&24\\&22\\&16\\&24\\&25\\&24\end{align}\)
- step2: Factorization the number:
\(\begin{align}&17=17\\&20=2\times 2\times 5\\&21=3\times 7\\&18=2\times 3\times 3\\&25=5\times 5\\&28=2\times 2\times 7\\&24=2\times 2\times 2\times 3\\&22=2\times 11\\&16=2\times 2\times 2\times 2\\&24=2\times 2\times 2\times 3\\&25=5\times 5\\&24=2\times 2\times 2\times 3\end{align}\)
- step3: Find the least common multiple:
\(11\times 17\times 2\times 2\times 2\times 2\times 3\times 3\times 5\times 5\times 7\)
- step4: Rewrite the expression:
\(11\times 17\times 2^{4}\times 3\times 3\times 5\times 5\times 7\)
- step5: Multiply the terms:
\(294525\times 2^{4}\)
- step6: Evaluate the power:
\(294525\times 16\)
- step7: Multiply:
\(4712400\)
Let's solve the problems step by step.
### Q. 1
We need to calculate the expression:
\[
4^{3}-0^{2}+\left(\frac{22}{2}\right)^{2}-8+7 \times 6
\]
1. Calculate \(4^3\):
\[
4^3 = 64
\]
2. Calculate \(0^2\):
\[
0^2 = 0
\]
3. Calculate \(\frac{22}{2}\):
\[
\frac{22}{2} = 11
\]
4. Calculate \(11^2\):
\[
11^2 = 121
\]
5. Calculate \(7 \times 6\):
\[
7 \times 6 = 42
\]
Now, substitute these values back into the expression:
\[
64 - 0 + 121 - 8 + 42
\]
Now, perform the calculations step by step:
- \(64 + 121 = 185\)
- \(185 - 8 = 177\)
- \(177 + 42 = 219\)
Thus, the answer for Q. 1 is **219**.
### Q. 2
To calculate the mode using the empirical formula for the given data:
\[
17, 20, 21, 18, 25, 28, 24, 22, 16, 24, 25, 24
\]
1. First, we need to find the frequency of each number:
- 16: 1
- 17: 1
- 18: 1
- 20: 1
- 21: 1
- 22: 1
- 24: 3
- 25: 2
- 28: 1
From the frequency count, the number **24** appears the most frequently (3 times).
Thus, the mode is **24**.
However, since the options provided do not include 24, we can calculate the mean to see if it aligns with any of the options. The mean was calculated as:
\[
\text{mean} = 22
\]
Since the mode is not directly provided in the options, we can conclude that the mode is **24** based on the frequency analysis.
### Final Answers:
- **Q. 1:** 219
- **Q. 2:** Mode is 24 (not listed in options).