Question
upstudy study bank question image url

2 1) \( \log _{3}(5-4 x)<\log _{3}(x-1) \)

Ask by Wilson Burgess. in Kazakhstan
Feb 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Решение неравенства \( \log_{3}(5 - 4x) < \log_{3}(x - 1) \) дает интервал \( \frac{6}{5} < x < \frac{5}{4} \).

Solution

Рассмотрим неравенство   log₃(5 – 4x) < log₃(x – 1). 1. Определим область допустимых значений (ОДЗ). Логарифм определён, если его аргумент положительный:   5 – 4x > 0 ⇒ x < 5/4,   x – 1 > 0 ⇒ x > 1. Таким образом, x принадлежит интервалу (1; 5/4). 2. Так как основание логарифма 3 больше 1, функция log₃(y) строго возрастает, а значит, неравенство log₃(5 – 4x) < log₃(x – 1) эквивалентно неравенству:   5 – 4x < x – 1. Решим его:   5 – 4x < x – 1   5 + 1 < x + 4x   (переносим x и 4x в одну сторону, а числа – в другую)   6 < 5x   x > 6/5. 3. Совместим полученное условие x > 6/5 с ОДЗ: x ∈ (1; 5/4):   Окончательный ответ: x ∈ (6/5; 5/4). Ответ: Решение неравенства — все x, удовлетворяющие условию 6/5 < x < 5/4.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the inequality \( \log _{3}(5-4x) < \log _{3}(x-1) \), we start by using the properties of logarithms, which allow us to deduce that \( 5-4x < x-1 \) if both logarithmic terms are defined and positive. This leads us to the inequality \( 5 + 1 < x + 4x \), simplifying to \( 6 < 5x \) or \( x > \frac{6}{5} \). Next, we need to ensure the domains of the logarithms are valid, which means: 1. \( 5 - 4x > 0 \) leading to \( x < \frac{5}{4} \) 2. \( x - 1 > 0 \) leading to \( x > 1 \) By combining these results, we find that the solution set is \( 1 < x < \frac{5}{4} \) and additionally \( x > \frac{6}{5} \), meaning the valid solution range becomes \( \frac{6}{5} < x < \frac{5}{4} \). Thus, the complete solution to the inequality is \( \frac{6}{5} < x < \frac{5}{4} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy