Expand tre pollowing \( ? \) simplify where possible \( 11 \cos \left(6+80^{\circ}\right) \) \( 2 \cdot \sin \left(660^{\circ}\right) \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To expand and simplify \( 11 \cos \left(6 + 80^{\circ}\right) \), we first need to add the angles: \[ 6 + 80^{\circ} = 86^{\circ} \] Now, we can compute: \[ 11 \cos(86^{\circ}) \approx 11 \cdot 0.0872 \approx 0.9592 \] Next, for \( 2 \cdot \sin(660^{\circ}) \), we should reduce the angle: \[ 660^{\circ} - 360^{\circ} = 300^{\circ} \] Now we compute: \[ 2 \cdot \sin(300^{\circ}) = 2 \cdot (-\frac{\sqrt{3}}{2}) = -\sqrt{3} \approx -1.732 \] Putting it all together, we have: \[ 11 \cos \left(6 + 80^{\circ}\right) \approx 0.9592 \] \[ 2 \cdot \sin \left(660^{\circ}\right) \approx -1.732 \] So your final simplified expressions are approximately \( 0.9592 \) and \( -1.732 \).