Question
upstudy study bank question image url

Beskou: \( g(x)=\frac{a}{x+p}+q \) Die volgende inligting van \( g \) word gegee: - Definisieversameling: \( x \in \mathrm{R} ; x \neq-2 \) - \( x \)-afsnit by \( \mathrm{K}(1 ; 0) \) - \( y \)-afsnit by \( \mathrm{N}\left(0 ;-\frac{1}{2}\right) \) 5.1 Toon dat die vergelyking van \( g \) geges word deur: \( g(x)=\frac{-3}{x+2}+1 \) 5.2 Skryf die waardeversameling van \( g \) neer. 5.3 Bepaal die vergelyking van \( h \), die simmetrie-as van \( g \), in die vorm \( y=m x+c \), waar \( m>0 \). 5.4 Skryf die koördinate van \( \mathrm{K}^{\prime} \), die beeld van K gereflekteer oor \( h \), neer.

Ask by Best Reed. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

- **5.1**: \( g(x) = \frac{-3}{x+2} + 1 \) - **5.2**: Range of \( g \): All real numbers except \( y = 1 \) - **5.3**: Axis of symmetry \( h \): \( y = 1 \) - **5.4**: Coordinates of \( K' \): \( (1, 2) \)

Solution

Let's solve the problem step by step. ### 5.1 Show that the equation of \( g \) is given by: \( g(x)=\frac{-3}{x+2}+1 \) We know the general form of the function is: \[ g(x) = \frac{a}{x+p} + q \] From the information provided: - The \( x \)-intercept is at \( K(1, 0) \). This means when \( g(1) = 0 \). - The \( y \)-intercept is at \( N(0, -\frac{1}{2}) \). This means when \( g(0) = -\frac{1}{2} \). - The domain is \( x \in \mathbb{R} \) and \( x \neq -2 \), which indicates \( p = 2 \). Substituting \( p = 2 \) into the function gives: \[ g(x) = \frac{a}{x+2} + q \] Now, we will use the intercepts to find \( a \) and \( q \). 1. **Using the \( x \)-intercept \( K(1, 0) \)**: \[ g(1) = 0 \implies \frac{a}{1+2} + q = 0 \implies \frac{a}{3} + q = 0 \quad (1) \] 2. **Using the \( y \)-intercept \( N(0, -\frac{1}{2}) \)**: \[ g(0) = -\frac{1}{2} \implies \frac{a}{0+2} + q = -\frac{1}{2} \implies \frac{a}{2} + q = -\frac{1}{2} \quad (2) \] Now we have a system of equations: From equation (1): \[ q = -\frac{a}{3} \] Substituting \( q \) into equation (2): \[ \frac{a}{2} - \frac{a}{3} = -\frac{1}{2} \] To solve this, we need a common denominator, which is 6: \[ \frac{3a}{6} - \frac{2a}{6} = -\frac{1}{2} \] This simplifies to: \[ \frac{a}{6} = -\frac{1}{2} \implies a = -3 \] Now substituting \( a \) back into equation (1) to find \( q \): \[ q = -\frac{-3}{3} = 1 \] Thus, we have: \[ g(x) = \frac{-3}{x+2} + 1 \] ### 5.2 Write down the range of \( g \) The function \( g(x) = \frac{-3}{x+2} + 1 \) has a vertical asymptote at \( x = -2 \). As \( x \) approaches \( -2 \) from the left, \( g(x) \) approaches \( -\infty \), and as \( x \) approaches \( -2 \) from the right, \( g(x) \) approaches \( +\infty \). The horizontal asymptote is \( y = 1 \) (as \( x \to \infty \) or \( x \to -\infty \)). Therefore, the range of \( g \) is: \[ \text{Range of } g: y \in \mathbb{R}, y \neq 1 \] ### 5.3 Determine the equation of \( h \), the axis of symmetry of \( g \) The function \( g(x) \) is a rational function and does not have a traditional axis of symmetry like a parabola. However, we can find the line of symmetry by reflecting points across the horizontal asymptote \( y = 1 \). The equation of the line of symmetry \( h \) is: \[ y = 1 \] ### 5.4 Write down the coordinates of \( K' \), the image of \( K \) reflected over \( h \) The point \( K(1, 0) \) is reflected over the line \( y = 1 \). The distance from \( K \) to the line \( y = 1 \) is: \[ 1 - 0 = 1 \] Thus, the reflected point \( K' \) will be: \[ K'(1, 1 + 1) = K'(1, 2) \] ### Summary of Answers - **5.1**: \( g(x) = \frac{-3}{x+2} + 1 \) - **5.2**: Range of \( g \): \( y \in \mathbb{R}, y \neq 1 \) - **5.3**: Equation of \( h \): \( y = 1 \) - **5.4**: Coordinates of \( K' \): \( (1, 2) \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Om te bewys dat die vergelyking van \( g \) \(\displaystyle g(x)=\frac{-3}{x+2}+1 \) is, kan ons die gegewe inligting oor die \(x\)-afsnit en \(y\)-afsnit gebruik. Die \(x\)-afsnit is waar \(g(x) = 0\), wat ons lei tot \(0 = \frac{-3}{x+2} + 1\). As ons dit oplos, kry ons \(x = 1\), wat oor eenstem met die punt \(K(1; 0)\). Vir die \(y\)-afsnit, wanneer \(x=0\), vind ons \(g(0) = -\frac{3}{2} + 1 = -\frac{1}{2}\), wat die punt \(N(0; -\frac{1}{2})\) bevestig. Albei afsnitte pas die vergelyking, wat die bewering bewys. Die waardeversameling van \(g\) kan afgelei word deur die tipe funksie. Aangesien dit 'n gebroke rasionele funksie is, sal dit nooit die waarde van \(1\) bereik nie, aangesien dit 'n horizontale asymptoot het van \(y = 1\). Dus is die waardeversameling \( \mathrm{R} : (-\infty, 1) \cup (1, +\infty) \). Vir die simmetrie as van \(g\), gebruik ons die eienaarskap van gebroke funksies. Die simmetrie-as sal die lyn wees wat deur die fokuspunt en die vertikale as gaan. Die vergelyking van die simmetrie-as is \(x = -2\), maar ons wil dit in die vorm \(y=m x+c\) hê. Die gradient is \(m = 0\) met \(c = 1\), maar omdat \(m\) meer as 0 moet wees. In hierdie geval kan ons dit nie in die vereiste vorm aanbied nie, omdat die simmetrie-as 'n vertikale lyn is. Vir die koördinate van \(K'\), die beeld van \(K\) wat gereflekteer is oor die simmetrie-as, moet ons die volgende doen: \(K(1,0)\) se x-koördinaat is \(1\), en die x-koördinaat van die simmetrie-as is \(-2\). Die afstand van \(1\) na \(-2\) is \(3\). Wanneer ons weer dieselfde afstand aan die ander kant van die simmetrie-as neem, sal ons \(K' \left(-5, 0\right)\) kry.

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy