Question
upstudy study bank question image url

4) \( 6 x^{2}+24 x+1 \)

Ask by Gonzalez Rodriguez. in Colombia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión \( 6x^{2} + 24x + 1 \) se puede escribir en forma canónica como \( 6(x + 2)^2 - 23 \). Las soluciones de la ecuación \( 6x^{2} + 24x + 1 = 0 \) son \( x = \frac{-12 + \sqrt{138}}{6} \) y \( x = \frac{-12 - \sqrt{138}}{6} \).

Solution

Dada la expresión   6x² + 24x + 1 podemos trabajarla de distintas maneras. A continuación se muestran dos procedimientos útiles. 1. Completar el cuadrado: Primero se extrae el factor común del término cuadrático y el lineal:   6x² + 24x + 1 = 6(x² + 4x) + 1 Ahora, completamos el cuadrado dentro del paréntesis. Recordamos que   x² + 4x = (x + 2)² – 4, pues (x + 2)² = x² + 4x + 4. Así, sustituimos:   6(x² + 4x) + 1 = 6[(x + 2)² – 4] + 1 = 6(x + 2)² – 24 + 1 = 6(x + 2)² – 23 Por lo tanto, la expresión puede escribirse en forma canónica como:   6(x + 2)² – 23 2. Resolver la ecuación 6x² + 24x + 1 = 0 (encontrar las raíces): Utilizando la fórmula general (fórmula cuadrática) para ax² + bx + c = 0,   x = (–b ± √(b² – 4ac)) / (2a) con a = 6, b = 24 y c = 1, tenemos: Paso 1. Calcular el discriminante:   Δ = 24² – 4·6·1 = 576 – 24 = 552 Observamos que 552 = 4·138, por lo que:   √Δ = √(4·138) = 2√138 Paso 2. Sustituir en la fórmula:   x = (–24 ± 2√138) / (2·6) = (–24 ± 2√138) / 12 Simplificando dividiendo el numerador y el denominador entre 2:   x = (–12 ± √138) / 6 Por lo tanto, las soluciones de la ecuación son:   x = (–12 + √138) / 6  y  x = (–12 – √138) / 6 Resumen: • Forma canónica: 6(x + 2)² – 23 • Raíces de la ecuación 6x² + 24x + 1 = 0: x = (–12 ± √138) / 6

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To factor the polynomial \( 6x^{2}+24x+1 \), we can use the quadratic formula or complete the square since it doesn't neatly factor into integers. The roots can be found using the formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 6 \), \( b = 24 \), and \( c = 1 \). This gives us the solutions for the variable \( x \) as well as insight into its behavior on a graph! Now, speaking of graphs, did you know that parabolas related to quadratics often represent motion? For instance, if this polynomial describes the height of a projectile, the vertex indicates the maximum height reached! Understanding these properties can help with practical applications like optimizing results in physics or engineering tasks.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy