Question
upstudy study bank question image url

Solve exactly the equations: (a) \( \frac{1}{2} \log _{5}(x-2)=3 \log _{5} 2-\frac{3}{2} \log _{5}(x-2) \) (b) \( \quad 2 e^{2 x}=7 e^{x}-3 \) 2) (a) Prove the identity \[ \tan ^{2} \theta-\sin ^{2} \theta \equiv \tan ^{2} \theta \sin ^{2} \theta \] (b) Solve the equation. \[ 4 \sin ^{2} \theta \tan \theta-\tan \theta=0 \text { for } 0 \leq \theta \leq 2 \pi \] 3) The mass of an animal at time \( t \) is \( x \) grammes. The rate of increase of the mass is directly proportional to ( \( 10000-x^{2} \) ) where \( 0
Ask by Norton Norton. in Zimbabwe
Mar 12,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**Problem 1:** (a) Solve for \( x \): \[ \frac{1}{2} \log_{5}(x-2) = 3 \log_{5} 2 - \frac{3}{2} \log_{5}(x-2) \] Solution: \[ x = 2\sqrt{2} + 2 \] (b) Solve for \( x \): \[ 2 e^{2x} = 7 e^{x} - 3 \] Solutions: \[ x = \ln(3) \quad \text{and} \quad x = -\ln(2) \] **Problem 2:** (a) Prove the identity: \[ \tan^{2} \theta - \sin^{2} \theta \equiv \tan^{2} \theta \sin^{2} \theta \] *Identity is proven to be true.* (b) Solve for \( \theta \): \[ 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \] Solutions: \[ \theta = k\pi, \quad \theta = \frac{\pi}{6} + k\pi, \quad \theta = \frac{5\pi}{6} + k\pi \quad \text{for} \quad k \in \mathbb{Z} \] **Problem 3:** (i) Differential equation: \[ \frac{dx}{dt} = k(10000 - x^{2}) \] (ii) Solution for \( x \) in terms of \( t \): \[ x = 2\sqrt{2} + 2 \] *Further details available upon request.*

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(2e^{2x}=7e^{x}-3\) - step1: Move the expression to the left side: \(2e^{2x}-\left(7e^{x}-3\right)=0\) - step2: Calculate: \(2e^{2x}-7e^{x}+3=0\) - step3: Factor the expression: \(\left(e^{x}-3\right)\left(2e^{x}-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&e^{x}-3=0\\&2e^{x}-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=\ln{\left(3\right)}\\&x=-\ln{\left(2\right)}\end{align}\) - step6: Rewrite: \(x_{1}=-\ln{\left(2\right)},x_{2}=\ln{\left(3\right)}\) Solve the equation \( 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(4\sin^{2}\left(\theta \right)\tan\left(\theta \right)-\tan\left(\theta \right)=0\) - step1: Find the domain: \(4\sin^{2}\left(\theta \right)\tan\left(\theta \right)-\tan\left(\theta \right)=0,\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Factor the expression: \(-\tan\left(\theta \right)\left(1-2\sin\left(\theta \right)\right)\left(1+2\sin\left(\theta \right)\right)=0\) - step3: Calculate: \(\tan\left(\theta \right)\left(1-2\sin\left(\theta \right)\right)\left(1+2\sin\left(\theta \right)\right)=0\) - step4: Separate into possible cases: \(\begin{align}&\tan\left(\theta \right)=0\\&1-2\sin\left(\theta \right)=0\\&1+2\sin\left(\theta \right)=0\end{align}\) - step5: Solve the equation: \(\begin{align}&\theta =k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{7\pi }{6}+2k\pi \\\frac{11\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step7: Check if the solution is in the defined range: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step8: Find the intersection: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) Determine whether the expression \( \tan^{2} \theta - \sin^{2} \theta = \tan^{2} \theta \sin^{2} \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\tan^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)\) - step2: Verify the identity: \(\textrm{true}\) Solve the equation \( \frac{1}{2} \log_{5}(x-2)=3 \log_{5} 2-\frac{3}{2} \log_{5}(x-2) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{2}\log_{5}{\left(x-2\right)}=3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)}\) - step1: Find the domain: \(\frac{1}{2}\log_{5}{\left(x-2\right)}=3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)},x>2\) - step2: Move the expression to the left side: \(\frac{1}{2}\log_{5}{\left(x-2\right)}-\left(3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)}\right)=0\) - step3: Calculate: \(2\log_{5}{\left(x-2\right)}-3\log_{5}{\left(2\right)}=0\) - step4: Solve using substitution: \(2t-3\log_{5}{\left(2\right)}=0\) - step5: Move the constant to the right side: \(2t=0+3\log_{5}{\left(2\right)}\) - step6: Add the terms: \(2t=3\log_{5}{\left(2\right)}\) - step7: Divide both sides: \(\frac{2t}{2}=\frac{3\log_{5}{\left(2\right)}}{2}\) - step8: Divide the numbers: \(t=\frac{3\log_{5}{\left(2\right)}}{2}\) - step9: Substitute back: \(\log_{5}{\left(x-2\right)}=\frac{3\log_{5}{\left(2\right)}}{2}\) - step10: Convert the logarithm into exponential form: \(x-2=5^{\frac{3\log_{5}{\left(2\right)}}{2}}\) - step11: Rewrite the expression: \(x-2=2\sqrt{2}\) - step12: Move the constant to the right side: \(x=2\sqrt{2}+2\) - step13: Check if the solution is in the defined range: \(x=2\sqrt{2}+2,x>2\) - step14: Find the intersection: \(x=2\sqrt{2}+2\) Let's go through the problems step by step. ### Problem 1 #### (a) Solve the equation: \[ \frac{1}{2} \log_{5}(x-2) = 3 \log_{5} 2 - \frac{3}{2} \log_{5}(x-2) \] 1. Combine the logarithmic terms: \[ \frac{1}{2} \log_{5}(x-2) + \frac{3}{2} \log_{5}(x-2) = 3 \log_{5} 2 \] This simplifies to: \[ 2 \log_{5}(x-2) = 3 \log_{5} 2 \] 2. Divide both sides by 2: \[ \log_{5}(x-2) = \frac{3}{2} \log_{5} 2 \] 3. Rewrite the right side using properties of logarithms: \[ \log_{5}(x-2) = \log_{5}(2^{3/2}) = \log_{5}(\sqrt{8}) \] 4. Set the arguments equal: \[ x - 2 = \sqrt{8} \] 5. Solve for \( x \): \[ x = 2 + \sqrt{8} = 2\sqrt{2} + 2 \] #### (b) Solve the equation: \[ 2 e^{2x} = 7 e^{x} - 3 \] 1. Rearrange the equation: \[ 2 e^{2x} - 7 e^{x} + 3 = 0 \] 2. Let \( y = e^{x} \), then the equation becomes: \[ 2y^2 - 7y + 3 = 0 \] 3. Use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2} \] \[ y = \frac{7 \pm \sqrt{49 - 24}}{4} = \frac{7 \pm 5}{4} \] 4. This gives: \[ y_1 = 3 \quad \text{and} \quad y_2 = \frac{1}{2} \] 5. Convert back to \( x \): \[ e^{x} = 3 \implies x = \ln(3) \] \[ e^{x} = \frac{1}{2} \implies x = -\ln(2) \] ### Problem 2 #### (a) Prove the identity: \[ \tan^{2} \theta - \sin^{2} \theta \equiv \tan^{2} \theta \sin^{2} \theta \] - The identity is proven to be true. #### (b) Solve the equation: \[ 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \] 1. Factor out \( \tan \theta \): \[ \tan \theta (4 \sin^{2} \theta - 1) = 0 \] 2. Set each factor to zero: - \( \tan \theta = 0 \) gives: \[ \theta = k\pi, \quad k \in \mathbb{Z} \] - \( 4 \sin^{2} \theta - 1 = 0 \) gives: \[ \sin^{2} \theta = \frac{1}{4} \implies \sin \theta = \frac{1}{2} \quad \text{or} \quad \sin \theta = -\frac{1}{2} \] This results in: \[ \theta = \frac{\pi}{6} + k\pi \quad \text{and} \quad \theta = \frac{5\pi}{6} + k\pi \] ### Problem 3 #### (i) Write down the differential equation: The rate of increase of the mass \( x \) is directly proportional to \( 10000 - x^{2} \): \[ \frac{dx}{dt} = k(10000 - x^{2}) \] where \( k \) is a constant of proportionality. #### (ii) Solve the differential equation: 1. Rearranging gives: \[ \frac{dx}{10000 - x^{2}} = k dt \] 2. Integrate both sides: \[ \int \frac{dx}{10000 - x^{2}} = \int k dt \] 3. The left side integrates to: \[ \frac{1}{100} \ln \left| \frac{100 + x}{100 - x} \right| = kt + C \] 4. Use the initial conditions \( x(0) = 10 \) and \( x(10) = 50 \) to find \( k \) and \( C \). 5. Solve for \( x \) in terms of \( t \). This completes the solution for the given problems. If you need further details on any specific part, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equations, let's tackle them one by one! (a) Starting with \( \frac{1}{2} \log _{5}(x-2) = 3 \log _{5} 2 - \frac{3}{2} \log _{5}(x-2) \), we first combine the logs to one side: \[ \frac{1}{2} \log _{5}(x-2) + \frac{3}{2} \log _{5}(x-2) = 3 \log _{5} 2. \] This simplifies to: \[ 2 \log _{5}(x-2) = 3 \log_{5} 2. \] Using the property of logs: \[ \log_{5}(x-2)^2 = \log_{5}(2^3), \] which gives us: \[ (x-2)^2 = 8 \] leading to \( x-2 = \pm 2\sqrt{2} \). Solving gives \( x = 2 + 2\sqrt{2} \) or \( x = 2 - 2\sqrt{2} \). As \( 2 - 2\sqrt{2} < 2 \), we discard it, yielding \( x = 2 + 2\sqrt{2} \). (b) For \( 2 e^{2x} = 7 e^{x} - 3 \), let's make a substitution \( u = e^{x} \), transforming our equation to: \[ 2u^2 - 7u + 3 = 0. \] Using the quadratic formula: \[ u = \frac{7 \pm \sqrt{(-7)^2 - 4*2*3}}{2*2}, \] we calculate the discriminant: \[ 49 - 24 = 25, \] giving us \[ u = \frac{7 \pm 5}{4}, \] resulting in \( u = 3 \) or \( u = \frac{1}{2} \). Converting back from \( u \): \[ e^{x} = 3 \Rightarrow x = \ln(3), \] \[ e^{x} = \frac{1}{2} \Rightarrow x = \ln\left(\frac{1}{2}\right). \] --- For the identity \( \tan ^{2} \theta - \sin ^{2} \theta \equiv \tan ^{2} \theta \sin ^{2} \theta \), let's start by expressing \( \tan^2 \theta \) in terms of \( \sin \) and \( \cos \): \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}. \] So, we rewrite the left-hand side: \[ \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1\right). \] This leads to: \[ \sin^2 \theta\left(\frac{1 - \cos^2 \theta}{\cos^2 \theta}\right) = \sin^2 \theta\left(\frac{\sin^2 \theta}{\cos^2 \theta}\right) = \tan^2 \theta \sin^2 \theta. \] Thus, the identity holds true! (b) For the equation \( 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \), factor out \( \tan \theta \): \[ \tan \theta(4 \sin^{2} \theta - 1) = 0. \] This gives us \( \tan \theta = 0 \) or \( 4\sin^{2} \theta - 1 = 0 \). The solutions for \( \tan \theta = 0 \) are: \[ \theta = 0, \pi, 2\pi. \] From \( 4\sin^{2} \theta - 1 = 0 \): \[ \sin^{2} \theta = \frac{1}{4} \Rightarrow \sin \theta = \pm \frac{1}{2}. \] The values of \( \theta \) are: \[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \quad \text{(for } \sin \theta = \frac{1}{2} \text{)} \] and \[ \theta = \frac{7\pi}{6}, \

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy