Pregunta
upstudy study bank question image url

Solve exactly the equations: (a) \( \frac{1}{2} \log _{5}(x-2)=3 \log _{5} 2-\frac{3}{2} \log _{5}(x-2) \) (b) \( \quad 2 e^{2 x}=7 e^{x}-3 \) 2) (a) Prove the identity \[ \tan ^{2} \theta-\sin ^{2} \theta \equiv \tan ^{2} \theta \sin ^{2} \theta \] (b) Solve the equation. \[ 4 \sin ^{2} \theta \tan \theta-\tan \theta=0 \text { for } 0 \leq \theta \leq 2 \pi \] 3) The mass of an animal at time \( t \) is \( x \) grammes. The rate of increase of the mass is directly proportional to ( \( 10000-x^{2} \) ) where \( 0
Ask by Norton Norton. in Zimbabwe
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Problem 1:** (a) Solve for \( x \): \[ \frac{1}{2} \log_{5}(x-2) = 3 \log_{5} 2 - \frac{3}{2} \log_{5}(x-2) \] Solution: \[ x = 2\sqrt{2} + 2 \] (b) Solve for \( x \): \[ 2 e^{2x} = 7 e^{x} - 3 \] Solutions: \[ x = \ln(3) \quad \text{and} \quad x = -\ln(2) \] **Problem 2:** (a) Prove the identity: \[ \tan^{2} \theta - \sin^{2} \theta \equiv \tan^{2} \theta \sin^{2} \theta \] *Identity is proven to be true.* (b) Solve for \( \theta \): \[ 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \] Solutions: \[ \theta = k\pi, \quad \theta = \frac{\pi}{6} + k\pi, \quad \theta = \frac{5\pi}{6} + k\pi \quad \text{for} \quad k \in \mathbb{Z} \] **Problem 3:** (i) Differential equation: \[ \frac{dx}{dt} = k(10000 - x^{2}) \] (ii) Solution for \( x \) in terms of \( t \): \[ x = 2\sqrt{2} + 2 \] *Further details available upon request.*

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(2e^{2x}=7e^{x}-3\) - step1: Move the expression to the left side: \(2e^{2x}-\left(7e^{x}-3\right)=0\) - step2: Calculate: \(2e^{2x}-7e^{x}+3=0\) - step3: Factor the expression: \(\left(e^{x}-3\right)\left(2e^{x}-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&e^{x}-3=0\\&2e^{x}-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=\ln{\left(3\right)}\\&x=-\ln{\left(2\right)}\end{align}\) - step6: Rewrite: \(x_{1}=-\ln{\left(2\right)},x_{2}=\ln{\left(3\right)}\) Solve the equation \( 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(4\sin^{2}\left(\theta \right)\tan\left(\theta \right)-\tan\left(\theta \right)=0\) - step1: Find the domain: \(4\sin^{2}\left(\theta \right)\tan\left(\theta \right)-\tan\left(\theta \right)=0,\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Factor the expression: \(-\tan\left(\theta \right)\left(1-2\sin\left(\theta \right)\right)\left(1+2\sin\left(\theta \right)\right)=0\) - step3: Calculate: \(\tan\left(\theta \right)\left(1-2\sin\left(\theta \right)\right)\left(1+2\sin\left(\theta \right)\right)=0\) - step4: Separate into possible cases: \(\begin{align}&\tan\left(\theta \right)=0\\&1-2\sin\left(\theta \right)=0\\&1+2\sin\left(\theta \right)=0\end{align}\) - step5: Solve the equation: \(\begin{align}&\theta =k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{7\pi }{6}+2k\pi \\\frac{11\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step7: Check if the solution is in the defined range: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step8: Find the intersection: \(\theta =\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) Determine whether the expression \( \tan^{2} \theta - \sin^{2} \theta = \tan^{2} \theta \sin^{2} \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\tan^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)\sin^{2}\left(\theta \right)\) - step2: Verify the identity: \(\textrm{true}\) Solve the equation \( \frac{1}{2} \log_{5}(x-2)=3 \log_{5} 2-\frac{3}{2} \log_{5}(x-2) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{2}\log_{5}{\left(x-2\right)}=3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)}\) - step1: Find the domain: \(\frac{1}{2}\log_{5}{\left(x-2\right)}=3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)},x>2\) - step2: Move the expression to the left side: \(\frac{1}{2}\log_{5}{\left(x-2\right)}-\left(3\log_{5}{\left(2\right)}-\frac{3}{2}\log_{5}{\left(x-2\right)}\right)=0\) - step3: Calculate: \(2\log_{5}{\left(x-2\right)}-3\log_{5}{\left(2\right)}=0\) - step4: Solve using substitution: \(2t-3\log_{5}{\left(2\right)}=0\) - step5: Move the constant to the right side: \(2t=0+3\log_{5}{\left(2\right)}\) - step6: Add the terms: \(2t=3\log_{5}{\left(2\right)}\) - step7: Divide both sides: \(\frac{2t}{2}=\frac{3\log_{5}{\left(2\right)}}{2}\) - step8: Divide the numbers: \(t=\frac{3\log_{5}{\left(2\right)}}{2}\) - step9: Substitute back: \(\log_{5}{\left(x-2\right)}=\frac{3\log_{5}{\left(2\right)}}{2}\) - step10: Convert the logarithm into exponential form: \(x-2=5^{\frac{3\log_{5}{\left(2\right)}}{2}}\) - step11: Rewrite the expression: \(x-2=2\sqrt{2}\) - step12: Move the constant to the right side: \(x=2\sqrt{2}+2\) - step13: Check if the solution is in the defined range: \(x=2\sqrt{2}+2,x>2\) - step14: Find the intersection: \(x=2\sqrt{2}+2\) Let's go through the problems step by step. ### Problem 1 #### (a) Solve the equation: \[ \frac{1}{2} \log_{5}(x-2) = 3 \log_{5} 2 - \frac{3}{2} \log_{5}(x-2) \] 1. Combine the logarithmic terms: \[ \frac{1}{2} \log_{5}(x-2) + \frac{3}{2} \log_{5}(x-2) = 3 \log_{5} 2 \] This simplifies to: \[ 2 \log_{5}(x-2) = 3 \log_{5} 2 \] 2. Divide both sides by 2: \[ \log_{5}(x-2) = \frac{3}{2} \log_{5} 2 \] 3. Rewrite the right side using properties of logarithms: \[ \log_{5}(x-2) = \log_{5}(2^{3/2}) = \log_{5}(\sqrt{8}) \] 4. Set the arguments equal: \[ x - 2 = \sqrt{8} \] 5. Solve for \( x \): \[ x = 2 + \sqrt{8} = 2\sqrt{2} + 2 \] #### (b) Solve the equation: \[ 2 e^{2x} = 7 e^{x} - 3 \] 1. Rearrange the equation: \[ 2 e^{2x} - 7 e^{x} + 3 = 0 \] 2. Let \( y = e^{x} \), then the equation becomes: \[ 2y^2 - 7y + 3 = 0 \] 3. Use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2} \] \[ y = \frac{7 \pm \sqrt{49 - 24}}{4} = \frac{7 \pm 5}{4} \] 4. This gives: \[ y_1 = 3 \quad \text{and} \quad y_2 = \frac{1}{2} \] 5. Convert back to \( x \): \[ e^{x} = 3 \implies x = \ln(3) \] \[ e^{x} = \frac{1}{2} \implies x = -\ln(2) \] ### Problem 2 #### (a) Prove the identity: \[ \tan^{2} \theta - \sin^{2} \theta \equiv \tan^{2} \theta \sin^{2} \theta \] - The identity is proven to be true. #### (b) Solve the equation: \[ 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \] 1. Factor out \( \tan \theta \): \[ \tan \theta (4 \sin^{2} \theta - 1) = 0 \] 2. Set each factor to zero: - \( \tan \theta = 0 \) gives: \[ \theta = k\pi, \quad k \in \mathbb{Z} \] - \( 4 \sin^{2} \theta - 1 = 0 \) gives: \[ \sin^{2} \theta = \frac{1}{4} \implies \sin \theta = \frac{1}{2} \quad \text{or} \quad \sin \theta = -\frac{1}{2} \] This results in: \[ \theta = \frac{\pi}{6} + k\pi \quad \text{and} \quad \theta = \frac{5\pi}{6} + k\pi \] ### Problem 3 #### (i) Write down the differential equation: The rate of increase of the mass \( x \) is directly proportional to \( 10000 - x^{2} \): \[ \frac{dx}{dt} = k(10000 - x^{2}) \] where \( k \) is a constant of proportionality. #### (ii) Solve the differential equation: 1. Rearranging gives: \[ \frac{dx}{10000 - x^{2}} = k dt \] 2. Integrate both sides: \[ \int \frac{dx}{10000 - x^{2}} = \int k dt \] 3. The left side integrates to: \[ \frac{1}{100} \ln \left| \frac{100 + x}{100 - x} \right| = kt + C \] 4. Use the initial conditions \( x(0) = 10 \) and \( x(10) = 50 \) to find \( k \) and \( C \). 5. Solve for \( x \) in terms of \( t \). This completes the solution for the given problems. If you need further details on any specific part, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equations, let's tackle them one by one! (a) Starting with \( \frac{1}{2} \log _{5}(x-2) = 3 \log _{5} 2 - \frac{3}{2} \log _{5}(x-2) \), we first combine the logs to one side: \[ \frac{1}{2} \log _{5}(x-2) + \frac{3}{2} \log _{5}(x-2) = 3 \log _{5} 2. \] This simplifies to: \[ 2 \log _{5}(x-2) = 3 \log_{5} 2. \] Using the property of logs: \[ \log_{5}(x-2)^2 = \log_{5}(2^3), \] which gives us: \[ (x-2)^2 = 8 \] leading to \( x-2 = \pm 2\sqrt{2} \). Solving gives \( x = 2 + 2\sqrt{2} \) or \( x = 2 - 2\sqrt{2} \). As \( 2 - 2\sqrt{2} < 2 \), we discard it, yielding \( x = 2 + 2\sqrt{2} \). (b) For \( 2 e^{2x} = 7 e^{x} - 3 \), let's make a substitution \( u = e^{x} \), transforming our equation to: \[ 2u^2 - 7u + 3 = 0. \] Using the quadratic formula: \[ u = \frac{7 \pm \sqrt{(-7)^2 - 4*2*3}}{2*2}, \] we calculate the discriminant: \[ 49 - 24 = 25, \] giving us \[ u = \frac{7 \pm 5}{4}, \] resulting in \( u = 3 \) or \( u = \frac{1}{2} \). Converting back from \( u \): \[ e^{x} = 3 \Rightarrow x = \ln(3), \] \[ e^{x} = \frac{1}{2} \Rightarrow x = \ln\left(\frac{1}{2}\right). \] --- For the identity \( \tan ^{2} \theta - \sin ^{2} \theta \equiv \tan ^{2} \theta \sin ^{2} \theta \), let's start by expressing \( \tan^2 \theta \) in terms of \( \sin \) and \( \cos \): \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}. \] So, we rewrite the left-hand side: \[ \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1\right). \] This leads to: \[ \sin^2 \theta\left(\frac{1 - \cos^2 \theta}{\cos^2 \theta}\right) = \sin^2 \theta\left(\frac{\sin^2 \theta}{\cos^2 \theta}\right) = \tan^2 \theta \sin^2 \theta. \] Thus, the identity holds true! (b) For the equation \( 4 \sin^{2} \theta \tan \theta - \tan \theta = 0 \), factor out \( \tan \theta \): \[ \tan \theta(4 \sin^{2} \theta - 1) = 0. \] This gives us \( \tan \theta = 0 \) or \( 4\sin^{2} \theta - 1 = 0 \). The solutions for \( \tan \theta = 0 \) are: \[ \theta = 0, \pi, 2\pi. \] From \( 4\sin^{2} \theta - 1 = 0 \): \[ \sin^{2} \theta = \frac{1}{4} \Rightarrow \sin \theta = \pm \frac{1}{2}. \] The values of \( \theta \) are: \[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \quad \text{(for } \sin \theta = \frac{1}{2} \text{)} \] and \[ \theta = \frac{7\pi}{6}, \

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad