Question
upstudy study bank question image url

8.1 .6 If \( \cos \alpha=\sqrt{t} \), where \( \alpha \) is an acute angle, express each of the following in terms of \( t \) : \( \begin{array}{ll}\text { (a) } \tan \alpha & \text { (3) } \mathrm{L} 2 \\ \text { (b) } \sin \left(180^{\circ}-\alpha\right) & \text { (2) } \mathrm{L} 1 \\ \text { (c) } 2 \sin \alpha \cos \alpha & \text { (2) } \mathrm{L} 2\end{array} \) 8.1 .7 If \( 3 \sin \theta=2 \) and \( \cos \theta<0 \) (a) With an aid of a diagram determine the value of \( 3 \tan ^{2} \theta-5 \cos \theta \)

Ask by Nguyen Salinas. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**8.1.6** (a) \(\tan \alpha = \sqrt{\frac{1 - t}{t}}\) (b) \(\sin(180^\circ - \alpha) = \sqrt{1 - t}\) (c) \(2\sin \alpha \cos \alpha = 2\sqrt{t(1 - t)}\) --- **8.1.7** Given \(3\sin\theta = 2\) and \(\cos\theta < 0\), we find: \[ \sin\theta = \frac{2}{3}, \quad \cos\theta = -\frac{\sqrt{5}}{3}, \quad \tan\theta = -\frac{2}{\sqrt{5}} \] Thus, \[ 3\tan^2\theta - 5\cos\theta = \frac{36 + 25\sqrt{5}}{15} \] **Final Answers:** (a) \(\tan \alpha = \sqrt{\frac{1 - t}{t}}\) (b) \(\sin(180^\circ - \alpha) = \sqrt{1 - t}\) (c) \(2\sin \alpha \cos \alpha = 2\sqrt{t(1 - t)}\) 8.1.7: \(\frac{36 + 25\sqrt{5}}{15}\)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

If \( \cos \alpha = \sqrt{t} \) and \( \alpha \) is an acute angle, you can find \( \tan \alpha \) using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \). This gives \( \sin^2 \alpha = 1 - t \), hence \( \sin \alpha = \sqrt{1 - t} \). Thus, \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\sqrt{1 - t}}{\sqrt{t}} = \sqrt{\frac{1 - t}{t}} \). For \( \sin(180^{\circ} - \alpha) \), we can use the identity that states \( \sin(180^{\circ} - x) = \sin x \). Therefore, \( \sin(180^{\circ} - \alpha) = \sin \alpha = \sqrt{1 - t} \). Lastly, for \( 2 \sin \alpha \cos \alpha \), we can use the double angle identity \( \sin(2\alpha) = 2 \sin \alpha \cos \alpha \). Substituting in our expressions gives: \[ 2 \sin \alpha \cos \alpha = \sin(2\alpha) = 2 \sqrt{1 - t} \cdot \sqrt{t} = 2\sqrt{t(1 - t)}. \] --- For the second part, since \( 3\sin \theta = 2 \), we find \( \sin \theta = \frac{2}{3} \). Within the second quadrant, where \( \cos \theta < 0 \), we can find \( \cos \theta \) using \( \cos^2 \theta + \sin^2 \theta = 1 \). Thus, \( \cos^2 \theta = 1 - \left(\frac{2}{3}\right)^2 = \frac{5}{9} \), leading to \( \cos \theta = -\frac{\sqrt{5}}{3} \). Now, to find \( 3\tan^2 \theta - 5\cos \theta \), we first calculate \( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2}{3}}{-\frac{\sqrt{5}}{3}} = -\frac{2}{\sqrt{5}} \), so \( \tan^2 \theta = \frac{4}{5} \). Plugging this into the expression, we get: \[ 3\tan^2 \theta - 5\cos \theta = 3\left(\frac{4}{5}\right) - 5\left(-\frac{\sqrt{5}}{3}\right) = \frac{12}{5} + \frac{5\sqrt{5}}{3}. \] Now, to combine these, finding a common denominator: \[ \frac{36 + 25\sqrt{5}}{15} \] This gives us the final answer: \[ 3\tan^2 \theta - 5\cos \theta = \frac{36 + 25\sqrt{5}}{15}. \]

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy