Given the matrix: \( A=\left[\begin{array}{lll}8 & 5 & 3 \\ 4 & 7 & 2 \\ 6 & 1 & 9\end{array}\right] \) Find the cofactor of \( A \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To find the cofactor of the matrix \( A=\left[\begin{array}{ccc}8 & 5 & 3 \\ 4 & 7 & 2 \\ 6 & 1 & 9\end{array}\right] \), we start by calculating the minors and cofactors for each element of the matrix. The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by \( C_{ij} = (-1)^{i+j} M_{ij} \), where \( M_{ij} \) is the minor of \( a_{ij} \). 1. For element \( a_{11} = 8 \): - Minor \( M_{11} = \det\left[\begin{array}{cc}7 & 2 \\ 1 & 9\end{array}\right] = (7)(9) - (2)(1) = 63 - 2 = 61 \) - Cofactor \( C_{11} = 61 \) 2. For element \( a_{12} = 5 \): - Minor \( M_{12} = \det\left[\begin{array}{cc}4 & 2 \\ 6 & 9\end{array}\right] = (4)(9) - (2)(6) = 36 - 12 = 24 \) - Cofactor \( C_{12} = -24 \) (due to the sign) 3. For element \( a_{13} = 3 \): - Minor \( M_{13} = \det\left[\begin{array}{cc}4 & 7 \\ 6 & 1\end{array}\right] = (4)(1) - (7)(6) = 4 - 42 = -38 \) - Cofactor \( C_{13} = -38 \) 4. For element \( a_{21} = 4 \): - Minor \( M_{21} = \det\left[\begin{array}{cc}5 & 3 \\ 1 & 9\end{array}\right] = (5)(9) - (3)(1) = 45 - 3 = 42 \) - Cofactor \( C_{21} = -42 \) 5. For element \( a_{22} = 7 \): - Minor \( M_{22} = \det\left[\begin{array}{cc}8 & 3 \\ 6 & 9\end{array}\right] = (8)(9) - (3)(6) = 72 - 18 = 54 \) - Cofactor \( C_{22} = 54 \) 6. For element \( a_{23} = 2 \): - Minor \( M_{23} = \det\left[\begin{array}{cc}8 & 5 \\ 6 & 1\end{array}\right] = (8)(1) - (5)(6) = 8 - 30 = -22 \) - Cofactor \( C_{23} = 22 \) 7. For element \( a_{31} = 6 \): - Minor \( M_{31} = \det\left[\begin{array}{cc}5 & 3 \\ 7 & 2\end{array}\right] = (5)(2) - (3)(7) = 10 - 21 = -11 \) - Cofactor \( C_{31} = -11 \) 8. For element \( a_{32} = 1 \): - Minor \( M_{32} = \det\left[\begin{array}{cc}8 & 3 \\ 4 & 2\end{array}\right] = (8)(2) - (3)(4) = 16 - 12 = 4 \) - Cofactor \( C_{32} = -4 \) 9. For element \( a_{33} = 9 \): - Minor \( M_{33} = \det\left[\begin{array}{cc}8 & 5 \\ 4 & 7\end{array}\right] = (8)(7) - (5)(4) = 56 - 20 = 36 \) - Cofactor \( C_{33} = 36 \) Putting these together, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 61 & -24 & -38 \\ -42 & 54 & 22 \\ -11 & -4 & 36 \end{bmatrix} \]