Pregunta
upstudy study bank question image url

Given the matrix: \( A=\left[\begin{array}{lll}8 & 5 & 3 \\ 4 & 7 & 2 \\ 6 & 1 & 9\end{array}\right] \) Find the cofactor of \( A \)

Ask by Carter Burton. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The cofactor matrix of matrix A is: \[ \begin{bmatrix} 61 & -24 & -38 \\ -42 & 54 & 22 \\ -11 & -4 & 36 \\ \end{bmatrix} \]

Solución

To find the cofactor matrix of A, we compute the cofactor for each element a₍ᵢⱼ₎ using the formula:   C₍ᵢⱼ₎ = (–1)^(i+j) · M₍ᵢⱼ₎ where M₍ᵢⱼ₎ is the determinant of the submatrix formed by deleting the i‑th row and j‑th column from A. The matrix A is:   A = [ [8, 5, 3],       [4, 7, 2],       [6, 1, 9] ] Step 1. Compute the minors and cofactors. 1. For element a₁₁ = 8 (i = 1, j = 1):   Delete row 1 and column 1:      [ [7, 2],        [1, 9] ]   Determinant = (7)(9) – (2)(1) = 63 – 2 = 61.   Sign = (–1)^(1+1) = (–1)^2 = 1.   C₁₁ = 1 · 61 = 61. 2. For element a₁₂ = 5 (i = 1, j = 2):   Delete row 1 and column 2:      [ [4, 2],        [6, 9] ]   Determinant = (4)(9) – (2)(6) = 36 – 12 = 24.   Sign = (–1)^(1+2) = (–1)^3 = –1.   C₁₂ = –1 · 24 = –24. 3. For element a₁₃ = 3 (i = 1, j = 3):   Delete row 1 and column 3:      [ [4, 7],        [6, 1] ]   Determinant = (4)(1) – (7)(6) = 4 – 42 = –38.   Sign = (–1)^(1+3) = (–1)^4 = 1.   C₁₃ = 1 · (–38) = –38. 4. For element a₂₁ = 4 (i = 2, j = 1):   Delete row 2 and column 1:      [ [5, 3],        [1, 9] ]   Determinant = (5)(9) – (3)(1) = 45 – 3 = 42.   Sign = (–1)^(2+1) = (–1)^3 = –1.   C₂₁ = –1 · 42 = –42. 5. For element a₂₂ = 7 (i = 2, j = 2):   Delete row 2 and column 2:      [ [8, 3],        [6, 9] ]   Determinant = (8)(9) – (3)(6) = 72 – 18 = 54.   Sign = (–1)^(2+2) = (–1)^4 = 1.   C₂₂ = 1 · 54 = 54. 6. For element a₂₃ = 2 (i = 2, j = 3):   Delete row 2 and column 3:      [ [8, 5],        [6, 1] ]   Determinant = (8)(1) – (5)(6) = 8 – 30 = –22.   Sign = (–1)^(2+3) = (–1)^5 = –1.   C₂₃ = –1 · (–22) = 22. 7. For element a₃₁ = 6 (i = 3, j = 1):   Delete row 3 and column 1:      [ [5, 3],        [7, 2] ]   Determinant = (5)(2) – (3)(7) = 10 – 21 = –11.   Sign = (–1)^(3+1) = (–1)^4 = 1.   C₃₁ = 1 · (–11) = –11. 8. For element a₃₂ = 1 (i = 3, j = 2):   Delete row 3 and column 2:      [ [8, 3],        [4, 2] ]   Determinant = (8)(2) – (3)(4) = 16 – 12 = 4.   Sign = (–1)^(3+2) = (–1)^5 = –1.   C₃₂ = –1 · 4 = –4. 9. For element a₃₃ = 9 (i = 3, j = 3):   Delete row 3 and column 3:      [ [8, 5],        [4, 7] ]   Determinant = (8)(7) – (5)(4) = 56 – 20 = 36.   Sign = (–1)^(3+3) = (–1)^6 = 1.   C₃₃ = 1 · 36 = 36. Step 2. Write the cofactor matrix using the computed cofactors.   Cofactor matrix, Cof(A), is:   [ [C₁₁, C₁₂, C₁₃],     [C₂₁, C₂₂, C₂₃],     [C₃₁, C₃₂, C₃₃] ]   = [ [61, –24, –38],      [–42, 54, 22],      [–11, –4, 36] ] Thus, the cofactor matrix of A is:   [ [61 -24 -38],    [–42 54 22],    [–11 -4 36] ].

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the cofactor of the matrix \( A=\left[\begin{array}{ccc}8 & 5 & 3 \\ 4 & 7 & 2 \\ 6 & 1 & 9\end{array}\right] \), we start by calculating the minors and cofactors for each element of the matrix. The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by \( C_{ij} = (-1)^{i+j} M_{ij} \), where \( M_{ij} \) is the minor of \( a_{ij} \). 1. For element \( a_{11} = 8 \): - Minor \( M_{11} = \det\left[\begin{array}{cc}7 & 2 \\ 1 & 9\end{array}\right] = (7)(9) - (2)(1) = 63 - 2 = 61 \) - Cofactor \( C_{11} = 61 \) 2. For element \( a_{12} = 5 \): - Minor \( M_{12} = \det\left[\begin{array}{cc}4 & 2 \\ 6 & 9\end{array}\right] = (4)(9) - (2)(6) = 36 - 12 = 24 \) - Cofactor \( C_{12} = -24 \) (due to the sign) 3. For element \( a_{13} = 3 \): - Minor \( M_{13} = \det\left[\begin{array}{cc}4 & 7 \\ 6 & 1\end{array}\right] = (4)(1) - (7)(6) = 4 - 42 = -38 \) - Cofactor \( C_{13} = -38 \) 4. For element \( a_{21} = 4 \): - Minor \( M_{21} = \det\left[\begin{array}{cc}5 & 3 \\ 1 & 9\end{array}\right] = (5)(9) - (3)(1) = 45 - 3 = 42 \) - Cofactor \( C_{21} = -42 \) 5. For element \( a_{22} = 7 \): - Minor \( M_{22} = \det\left[\begin{array}{cc}8 & 3 \\ 6 & 9\end{array}\right] = (8)(9) - (3)(6) = 72 - 18 = 54 \) - Cofactor \( C_{22} = 54 \) 6. For element \( a_{23} = 2 \): - Minor \( M_{23} = \det\left[\begin{array}{cc}8 & 5 \\ 6 & 1\end{array}\right] = (8)(1) - (5)(6) = 8 - 30 = -22 \) - Cofactor \( C_{23} = 22 \) 7. For element \( a_{31} = 6 \): - Minor \( M_{31} = \det\left[\begin{array}{cc}5 & 3 \\ 7 & 2\end{array}\right] = (5)(2) - (3)(7) = 10 - 21 = -11 \) - Cofactor \( C_{31} = -11 \) 8. For element \( a_{32} = 1 \): - Minor \( M_{32} = \det\left[\begin{array}{cc}8 & 3 \\ 4 & 2\end{array}\right] = (8)(2) - (3)(4) = 16 - 12 = 4 \) - Cofactor \( C_{32} = -4 \) 9. For element \( a_{33} = 9 \): - Minor \( M_{33} = \det\left[\begin{array}{cc}8 & 5 \\ 4 & 7\end{array}\right] = (8)(7) - (5)(4) = 56 - 20 = 36 \) - Cofactor \( C_{33} = 36 \) Putting these together, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 61 & -24 & -38 \\ -42 & 54 & 22 \\ -11 & -4 & 36 \end{bmatrix} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad