Question
upstudy study bank question image url

ERCISE 15 Simplify the following as far as possible. \( \begin{array}{ll}\text { (1) } \frac{x}{x-3}+\frac{2}{3-x} & \text { (2) } \frac{x}{x+3}-\frac{2}{3+x} \\ \text { (3) } \frac{2 x}{x-3}+\frac{x+1}{9-x^{2}} & \text { (4) } \frac{3}{x^{2}-3 x-4}-\frac{x+1}{4-x} \\ \text { (5) } \frac{x}{2 x^{2}+11 x+5}-\frac{5}{5+x} & \text { (6) } \frac{x}{4-x}-\frac{2 x-24}{x^{2}-4 x} \\ \text { (7) } \frac{3}{6 x+6}-\frac{2-x}{6 x} & \text { (8) } \frac{x+4}{x^{2}-2 x}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} \\ \text { (9) } \frac{x+2}{4 x^{2}-2 x+1}-\frac{8 x+1}{8 x^{3}+1} & \end{array} \)

Ask by Chadwick Evans. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 1. \( \frac{x}{x-3} + \frac{2}{3-x} = \frac{x-2}{x-3} \) 2. \( \frac{x}{x+3} - \frac{2}{3+x} = \frac{x-2}{x+3} \) 3. \( \frac{2x}{x-3} + \frac{x+1}{9-x^2} = \frac{5x + 2x^2 - 1}{x^2 - 9} \) 4. \( \frac{3}{x^2 - 3x - 4} - \frac{x+1}{4-x} = \frac{4 + x^2 + 2x}{x^2 - 3x - 4} \) 5. \( \frac{x}{2x^2 + 11x + 5} - \frac{5}{5+x} = -\frac{9x + 5}{2x^2 + 11x + 5} \) 6. \( \frac{x}{4-x} - \frac{2x-24}{x^2 - 4x} = -\frac{x + 6}{x} \) 7. \( \frac{3}{6x + 6} - \frac{2-x}{6x} = \frac{2x - 2 + x^2}{6x^2 + 6x} \) 8. \( \frac{x+4}{x^2 - 2x} - \frac{x}{(2-x)^2} + \frac{x+2}{x-2} = \frac{-2x - 8 + x^3}{x^3 - 4x^2 + 4x} \) 9. \( \frac{x+2}{4x^2 - 2x + 1} - \frac{8x+1}{8x^3 + 1} = \frac{2x^2 - 3x + 1}{8x^3 + 1} \) These are the simplified forms of the given expressions.

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x-3\right)}+\frac{2}{\left(3-x\right)}\) - step1: Remove the parentheses: \(\frac{x}{x-3}+\frac{2}{3-x}\) - step2: Rewrite the fractions: \(\frac{x}{x-3}-\frac{2}{-3+x}\) - step3: Rewrite the expression: \(\frac{x}{x-3}-\frac{2}{x-3}\) - step4: Transform the expression: \(\frac{x-2}{x-3}\) Calculate or simplify the expression \( x/(x+3) - 2/(3+x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x+3\right)}-\frac{2}{\left(3+x\right)}\) - step1: Remove the parentheses: \(\frac{x}{x+3}-\frac{2}{3+x}\) - step2: Rewrite the expression: \(\frac{x}{x+3}-\frac{2}{x+3}\) - step3: Transform the expression: \(\frac{x-2}{x+3}\) Calculate or simplify the expression \( x/(2*x^2 + 11*x + 5) - 5/(5+x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(2x^{2}+11x+5\right)}-\frac{5}{\left(5+x\right)}\) - step1: Remove the parentheses: \(\frac{x}{2x^{2}+11x+5}-\frac{5}{5+x}\) - step2: Factor the expression: \(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5}{5+x}\) - step3: Reduce fractions to a common denominator: \(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5\left(2x+1\right)}{\left(5+x\right)\left(2x+1\right)}\) - step4: Rewrite the expression: \(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5\left(2x+1\right)}{\left(2x+1\right)\left(x+5\right)}\) - step5: Transform the expression: \(\frac{x-5\left(2x+1\right)}{\left(2x+1\right)\left(x+5\right)}\) - step6: Multiply the terms: \(\frac{x-\left(10x+5\right)}{\left(2x+1\right)\left(x+5\right)}\) - step7: Subtract the terms: \(\frac{-9x-5}{\left(2x+1\right)\left(x+5\right)}\) - step8: Rewrite the fraction: \(-\frac{9x+5}{\left(2x+1\right)\left(x+5\right)}\) - step9: Multiply the terms: \(-\frac{9x+5}{2x^{2}+11x+5}\) Calculate or simplify the expression \( x/(4-x) - (2*x-24)/(x^2-4*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(4-x\right)}-\frac{\left(2x-24\right)}{\left(x^{2}-4x\right)}\) - step1: Remove the parentheses: \(\frac{x}{4-x}-\frac{2x-24}{x^{2}-4x}\) - step2: Factor the expression: \(\frac{x}{4-x}-\frac{2x-24}{x\left(x-4\right)}\) - step3: Reduce fractions to a common denominator: \(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{x\left(x-4\right)\left(-1\right)}\) - step4: Reorder the terms: \(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{-x\left(x-4\right)}\) - step5: Rewrite the expression: \(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\) - step6: Transform the expression: \(\frac{x\times x-\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\) - step7: Multiply the terms: \(\frac{x^{2}-\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\) - step8: Multiply the terms: \(\frac{x^{2}-\left(-2x+24\right)}{\left(4-x\right)x}\) - step9: Remove the parentheses: \(\frac{x^{2}+2x-24}{\left(4-x\right)x}\) - step10: Factor the expression: \(\frac{\left(-x+4\right)\left(-x-6\right)}{\left(-x+4\right)x}\) - step11: Reduce the fraction: \(\frac{-x-6}{x}\) - step12: Calculate: \(-\frac{x+6}{x}\) Calculate or simplify the expression \( (x+2)/(4*x^2-2*x+1) - (8*x+1)/(8*x^3+1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+2\right)}{\left(4x^{2}-2x+1\right)}-\frac{\left(8x+1\right)}{\left(8x^{3}+1\right)}\) - step1: Remove the parentheses: \(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x^{3}+1}\) - step2: Factor the expression: \(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step3: Reduce fractions to a common denominator: \(\frac{\left(x+2\right)\left(2x+1\right)}{\left(4x^{2}-2x+1\right)\left(2x+1\right)}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step4: Rewrite the expression: \(\frac{\left(x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step5: Transform the expression: \(\frac{\left(x+2\right)\left(2x+1\right)-\left(8x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step6: Multiply the terms: \(\frac{2x^{2}+5x+2-\left(8x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step7: Calculate: \(\frac{2x^{2}-3x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\) - step8: Simplify the product: \(\frac{2x^{2}-3x+1}{8x^{3}+1}\) Calculate or simplify the expression \( 3/(6*x+6) - (2-x)/(6*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{3}{\left(6x+6\right)}-\frac{\left(2-x\right)}{6x}\) - step1: Remove the parentheses: \(\frac{3}{6x+6}-\frac{2-x}{6x}\) - step2: Divide the terms: \(\frac{1}{2x+2}-\frac{2-x}{6x}\) - step3: Factor the expression: \(\frac{1}{2\left(x+1\right)}-\frac{2-x}{6x}\) - step4: Reduce fractions to a common denominator: \(\frac{3x}{2\left(x+1\right)\times 3x}-\frac{\left(2-x\right)\left(x+1\right)}{6x\left(x+1\right)}\) - step5: Multiply the numbers: \(\frac{3x}{6\left(x+1\right)x}-\frac{\left(2-x\right)\left(x+1\right)}{6x\left(x+1\right)}\) - step6: Rewrite the expression: \(\frac{3x}{6\left(x+1\right)x}-\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+1\right)x}\) - step7: Transform the expression: \(\frac{3x-\left(2-x\right)\left(x+1\right)}{6\left(x+1\right)x}\) - step8: Multiply the terms: \(\frac{3x-\left(x+2-x^{2}\right)}{6\left(x+1\right)x}\) - step9: Subtract the terms: \(\frac{2x-2+x^{2}}{6\left(x+1\right)x}\) - step10: Calculate: \(\frac{2x-2+x^{2}}{6x^{2}+6x}\) Calculate or simplify the expression \( 2*x/(x-3) + (x+1)/(9-x^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{2x}{\left(x-3\right)}+\frac{\left(x+1\right)}{\left(9-x^{2}\right)}\) - step1: Remove the parentheses: \(\frac{2x}{x-3}+\frac{x+1}{9-x^{2}}\) - step2: Factor the expression: \(\frac{2x}{x-3}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\) - step3: Reduce fractions to a common denominator: \(\frac{2x\left(-3-x\right)}{\left(x-3\right)\left(-3-x\right)}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\) - step4: Rewrite the expression: \(\frac{2x\left(-3-x\right)}{\left(-3-x\right)\left(x-3\right)}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\) - step5: Transform the expression: \(\frac{2x\left(-3-x\right)+x+1}{\left(-3-x\right)\left(x-3\right)}\) - step6: Multiply the terms: \(\frac{-6x-2x^{2}+x+1}{\left(-3-x\right)\left(x-3\right)}\) - step7: Add the terms: \(\frac{-5x-2x^{2}+1}{\left(-3-x\right)\left(x-3\right)}\) - step8: Rewrite the fraction: \(\frac{5x+2x^{2}-1}{\left(3+x\right)\left(x-3\right)}\) - step9: Multiply the terms: \(\frac{5x+2x^{2}-1}{x^{2}-9}\) Calculate or simplify the expression \( 3/(x^2-3*x-4) - (x+1)/(4-x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{3}{\left(x^{2}-3x-4\right)}-\frac{\left(x+1\right)}{\left(4-x\right)}\) - step1: Remove the parentheses: \(\frac{3}{x^{2}-3x-4}-\frac{x+1}{4-x}\) - step2: Rewrite the fractions: \(\frac{3}{x^{2}-3x-4}+\frac{x+1}{-4+x}\) - step3: Factor the expression: \(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{x+1}{-4+x}\) - step4: Reduce fractions to a common denominator: \(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(-4+x\right)\left(x+1\right)}\) - step5: Rewrite the expression: \(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\) - step6: Transform the expression: \(\frac{3+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\) - step7: Multiply the terms: \(\frac{3+x^{2}+2x+1}{\left(x+1\right)\left(x-4\right)}\) - step8: Add the numbers: \(\frac{4+x^{2}+2x}{\left(x+1\right)\left(x-4\right)}\) - step9: Multiply the terms: \(\frac{4+x^{2}+2x}{x^{2}-3x-4}\) Calculate or simplify the expression \( (x+4)/(x^2-2*x) - x/(2-x)^2 + (x+2)/(x-2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+4\right)}{\left(x^{2}-2x\right)}-\frac{x}{\left(2-x\right)^{2}}+\frac{\left(x+2\right)}{\left(x-2\right)}\) - step1: Remove the parentheses: \(\frac{x+4}{x^{2}-2x}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\) - step2: Factor the expression: \(\frac{x+4}{x\left(x-2\right)}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\) - step3: Reduce fractions to a common denominator: \(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)\left(x-2\right)}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)\left(x-2\right)x}\) - step4: Multiply: \(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)\left(x-2\right)x}\) - step5: Multiply: \(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)^{2}x}\) - step6: Rewrite the expression: \(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{x\left(x-2\right)^{2}}+\frac{\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\) - step7: Transform the expression: \(\frac{\left(x+4\right)\left(x-2\right)-x\times x+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\) - step8: Multiply the terms: \(\frac{x^{2}+2x-8-x\times x+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\) - step9: Multiply the terms: \(\frac{x^{2}+2x-8-x^{2}+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\) - step10: Multiply the terms: \(\frac{x^{2}+2x-8-x^{2}+x^{3}-4x}{x\left(x-2\right)^{2}}\) - step11: Calculate: \(\frac{-2x-8+x^{3}}{x\left(x-2\right)^{2}}\) - step12: Expand the expression: \(\frac{-2x-8+x^{3}}{x^{3}-4x^{2}+4x}\) Here are the simplified results for each of the expressions: 1. **Expression:** \( \frac{x}{x-3} + \frac{2}{3-x} \) **Simplified Result:** \( \frac{x-2}{x-3} \) 2. **Expression:** \( \frac{x}{x+3} - \frac{2}{3+x} \) **Simplified Result:** \( \frac{x-2}{x+3} \) 3. **Expression:** \( \frac{2x}{x-3} + \frac{x+1}{9-x^2} \) **Simplified Result:** \( \frac{5x + 2x^2 - 1}{x^2 - 9} \) 4. **Expression:** \( \frac{3}{x^2 - 3x - 4} - \frac{x+1}{4-x} \) **Simplified Result:** \( \frac{4 + x^2 + 2x}{x^2 - 3x - 4} \) 5. **Expression:** \( \frac{x}{2x^2 + 11x + 5} - \frac{5}{5+x} \) **Simplified Result:** \( -\frac{9x + 5}{2x^2 + 11x + 5} \) 6. **Expression:** \( \frac{x}{4-x} - \frac{2x-24}{x^2 - 4x} \) **Simplified Result:** \( -\frac{x + 6}{x} \) 7. **Expression:** \( \frac{3}{6x + 6} - \frac{2-x}{6x} \) **Simplified Result:** \( \frac{2x - 2 + x^2}{6x^2 + 6x} \) 8. **Expression:** \( \frac{x+4}{x^2 - 2x} - \frac{x}{(2-x)^2} + \frac{x+2}{x-2} \) **Simplified Result:** \( \frac{-2x - 8 + x^3}{x^3 - 4x^2 + 4x} \) 9. **Expression:** \( \frac{x+2}{4x^2 - 2x + 1} - \frac{8x+1}{8x^3 + 1} \) **Simplified Result:** \( \frac{2x^2 - 3x + 1}{8x^3 + 1} \) These results represent the simplified forms of the given expressions. If you need further assistance or explanations for any specific expression, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To tackle the simplifications of these expressions, let's first break them down. First additional information: When combining rational expressions like \( \frac{x}{x-3}+\frac{2}{3-x} \), it's essential to observe that \( 3-x \) is just the negative of \( x-3 \). Therefore, rewriting \( \frac{2}{3-x} \) as \( \frac{-2}{x-3} \) would make it easier to combine these fractions since the denominators will now align as \( x-3 \). This little trick can save you from conflicts when determining a common denominator. Second additional information: Have you ever faced a messy rational expression that just won't cooperate? A helpful tip is to factor wherever possible! For example, expressions like \( x^2-4x \) can be factored to \( x(x-4) \), while \( 9-x^2 \) factors further into \( (3-x)(3+x) \). By simplifying the expressions before any addition or subtraction, you can sidestep a plethora of common mistakes, making the whole process smoother and more enjoyable – like a nicely brewed cup of coffee!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy