Answer
Here are the simplified results for each expression:
1. \( \frac{x}{x-3} + \frac{2}{3-x} = \frac{x-2}{x-3} \)
2. \( \frac{x}{x+3} - \frac{2}{3+x} = \frac{x-2}{x+3} \)
3. \( \frac{2x}{x-3} + \frac{x+1}{9-x^2} = \frac{5x + 2x^2 - 1}{x^2 - 9} \)
4. \( \frac{3}{x^2 - 3x - 4} - \frac{x+1}{4-x} = \frac{4 + x^2 + 2x}{x^2 - 3x - 4} \)
5. \( \frac{x}{2x^2 + 11x + 5} - \frac{5}{5+x} = -\frac{9x + 5}{2x^2 + 11x + 5} \)
6. \( \frac{x}{4-x} - \frac{2x-24}{x^2 - 4x} = -\frac{x + 6}{x} \)
7. \( \frac{3}{6x + 6} - \frac{2-x}{6x} = \frac{2x - 2 + x^2}{6x^2 + 6x} \)
8. \( \frac{x+4}{x^2 - 2x} - \frac{x}{(2-x)^2} + \frac{x+2}{x-2} = \frac{-2x - 8 + x^3}{x^3 - 4x^2 + 4x} \)
9. \( \frac{x+2}{4x^2 - 2x + 1} - \frac{8x+1}{8x^3 + 1} = \frac{2x^2 - 3x + 1}{8x^3 + 1} \)
These are the simplified forms of the given expressions.
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(x-3\right)}+\frac{2}{\left(3-x\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{x-3}+\frac{2}{3-x}\)
- step2: Rewrite the fractions:
\(\frac{x}{x-3}-\frac{2}{-3+x}\)
- step3: Rewrite the expression:
\(\frac{x}{x-3}-\frac{2}{x-3}\)
- step4: Transform the expression:
\(\frac{x-2}{x-3}\)
Calculate or simplify the expression \( x/(x+3) - 2/(3+x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(x+3\right)}-\frac{2}{\left(3+x\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{x+3}-\frac{2}{3+x}\)
- step2: Rewrite the expression:
\(\frac{x}{x+3}-\frac{2}{x+3}\)
- step3: Transform the expression:
\(\frac{x-2}{x+3}\)
Calculate or simplify the expression \( x/(2*x^2 + 11*x + 5) - 5/(5+x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(2x^{2}+11x+5\right)}-\frac{5}{\left(5+x\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{2x^{2}+11x+5}-\frac{5}{5+x}\)
- step2: Factor the expression:
\(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5}{5+x}\)
- step3: Reduce fractions to a common denominator:
\(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5\left(2x+1\right)}{\left(5+x\right)\left(2x+1\right)}\)
- step4: Rewrite the expression:
\(\frac{x}{\left(2x+1\right)\left(x+5\right)}-\frac{5\left(2x+1\right)}{\left(2x+1\right)\left(x+5\right)}\)
- step5: Transform the expression:
\(\frac{x-5\left(2x+1\right)}{\left(2x+1\right)\left(x+5\right)}\)
- step6: Multiply the terms:
\(\frac{x-\left(10x+5\right)}{\left(2x+1\right)\left(x+5\right)}\)
- step7: Subtract the terms:
\(\frac{-9x-5}{\left(2x+1\right)\left(x+5\right)}\)
- step8: Rewrite the fraction:
\(-\frac{9x+5}{\left(2x+1\right)\left(x+5\right)}\)
- step9: Multiply the terms:
\(-\frac{9x+5}{2x^{2}+11x+5}\)
Calculate or simplify the expression \( x/(4-x) - (2*x-24)/(x^2-4*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(4-x\right)}-\frac{\left(2x-24\right)}{\left(x^{2}-4x\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{4-x}-\frac{2x-24}{x^{2}-4x}\)
- step2: Factor the expression:
\(\frac{x}{4-x}-\frac{2x-24}{x\left(x-4\right)}\)
- step3: Reduce fractions to a common denominator:
\(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{x\left(x-4\right)\left(-1\right)}\)
- step4: Reorder the terms:
\(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{-x\left(x-4\right)}\)
- step5: Rewrite the expression:
\(\frac{x\times x}{\left(4-x\right)x}-\frac{\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\)
- step6: Transform the expression:
\(\frac{x\times x-\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\)
- step7: Multiply the terms:
\(\frac{x^{2}-\left(2x-24\right)\left(-1\right)}{\left(4-x\right)x}\)
- step8: Multiply the terms:
\(\frac{x^{2}-\left(-2x+24\right)}{\left(4-x\right)x}\)
- step9: Remove the parentheses:
\(\frac{x^{2}+2x-24}{\left(4-x\right)x}\)
- step10: Factor the expression:
\(\frac{\left(-x+4\right)\left(-x-6\right)}{\left(-x+4\right)x}\)
- step11: Reduce the fraction:
\(\frac{-x-6}{x}\)
- step12: Calculate:
\(-\frac{x+6}{x}\)
Calculate or simplify the expression \( (x+2)/(4*x^2-2*x+1) - (8*x+1)/(8*x^3+1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+2\right)}{\left(4x^{2}-2x+1\right)}-\frac{\left(8x+1\right)}{\left(8x^{3}+1\right)}\)
- step1: Remove the parentheses:
\(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x^{3}+1}\)
- step2: Factor the expression:
\(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step3: Reduce fractions to a common denominator:
\(\frac{\left(x+2\right)\left(2x+1\right)}{\left(4x^{2}-2x+1\right)\left(2x+1\right)}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step4: Rewrite the expression:
\(\frac{\left(x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}-\frac{8x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step5: Transform the expression:
\(\frac{\left(x+2\right)\left(2x+1\right)-\left(8x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step6: Multiply the terms:
\(\frac{2x^{2}+5x+2-\left(8x+1\right)}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step7: Calculate:
\(\frac{2x^{2}-3x+1}{\left(2x+1\right)\left(4x^{2}-2x+1\right)}\)
- step8: Simplify the product:
\(\frac{2x^{2}-3x+1}{8x^{3}+1}\)
Calculate or simplify the expression \( 3/(6*x+6) - (2-x)/(6*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3}{\left(6x+6\right)}-\frac{\left(2-x\right)}{6x}\)
- step1: Remove the parentheses:
\(\frac{3}{6x+6}-\frac{2-x}{6x}\)
- step2: Divide the terms:
\(\frac{1}{2x+2}-\frac{2-x}{6x}\)
- step3: Factor the expression:
\(\frac{1}{2\left(x+1\right)}-\frac{2-x}{6x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{3x}{2\left(x+1\right)\times 3x}-\frac{\left(2-x\right)\left(x+1\right)}{6x\left(x+1\right)}\)
- step5: Multiply the numbers:
\(\frac{3x}{6\left(x+1\right)x}-\frac{\left(2-x\right)\left(x+1\right)}{6x\left(x+1\right)}\)
- step6: Rewrite the expression:
\(\frac{3x}{6\left(x+1\right)x}-\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+1\right)x}\)
- step7: Transform the expression:
\(\frac{3x-\left(2-x\right)\left(x+1\right)}{6\left(x+1\right)x}\)
- step8: Multiply the terms:
\(\frac{3x-\left(x+2-x^{2}\right)}{6\left(x+1\right)x}\)
- step9: Subtract the terms:
\(\frac{2x-2+x^{2}}{6\left(x+1\right)x}\)
- step10: Calculate:
\(\frac{2x-2+x^{2}}{6x^{2}+6x}\)
Calculate or simplify the expression \( 2*x/(x-3) + (x+1)/(9-x^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2x}{\left(x-3\right)}+\frac{\left(x+1\right)}{\left(9-x^{2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2x}{x-3}+\frac{x+1}{9-x^{2}}\)
- step2: Factor the expression:
\(\frac{2x}{x-3}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\)
- step3: Reduce fractions to a common denominator:
\(\frac{2x\left(-3-x\right)}{\left(x-3\right)\left(-3-x\right)}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\)
- step4: Rewrite the expression:
\(\frac{2x\left(-3-x\right)}{\left(-3-x\right)\left(x-3\right)}+\frac{x+1}{\left(-3-x\right)\left(x-3\right)}\)
- step5: Transform the expression:
\(\frac{2x\left(-3-x\right)+x+1}{\left(-3-x\right)\left(x-3\right)}\)
- step6: Multiply the terms:
\(\frac{-6x-2x^{2}+x+1}{\left(-3-x\right)\left(x-3\right)}\)
- step7: Add the terms:
\(\frac{-5x-2x^{2}+1}{\left(-3-x\right)\left(x-3\right)}\)
- step8: Rewrite the fraction:
\(\frac{5x+2x^{2}-1}{\left(3+x\right)\left(x-3\right)}\)
- step9: Multiply the terms:
\(\frac{5x+2x^{2}-1}{x^{2}-9}\)
Calculate or simplify the expression \( 3/(x^2-3*x-4) - (x+1)/(4-x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3}{\left(x^{2}-3x-4\right)}-\frac{\left(x+1\right)}{\left(4-x\right)}\)
- step1: Remove the parentheses:
\(\frac{3}{x^{2}-3x-4}-\frac{x+1}{4-x}\)
- step2: Rewrite the fractions:
\(\frac{3}{x^{2}-3x-4}+\frac{x+1}{-4+x}\)
- step3: Factor the expression:
\(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{x+1}{-4+x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(-4+x\right)\left(x+1\right)}\)
- step5: Rewrite the expression:
\(\frac{3}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)
- step6: Transform the expression:
\(\frac{3+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)
- step7: Multiply the terms:
\(\frac{3+x^{2}+2x+1}{\left(x+1\right)\left(x-4\right)}\)
- step8: Add the numbers:
\(\frac{4+x^{2}+2x}{\left(x+1\right)\left(x-4\right)}\)
- step9: Multiply the terms:
\(\frac{4+x^{2}+2x}{x^{2}-3x-4}\)
Calculate or simplify the expression \( (x+4)/(x^2-2*x) - x/(2-x)^2 + (x+2)/(x-2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+4\right)}{\left(x^{2}-2x\right)}-\frac{x}{\left(2-x\right)^{2}}+\frac{\left(x+2\right)}{\left(x-2\right)}\)
- step1: Remove the parentheses:
\(\frac{x+4}{x^{2}-2x}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\)
- step2: Factor the expression:
\(\frac{x+4}{x\left(x-2\right)}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\)
- step3: Reduce fractions to a common denominator:
\(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)\left(x-2\right)}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)\left(x-2\right)x}\)
- step4: Multiply:
\(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)\left(x-2\right)x}\)
- step5: Multiply:
\(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{\left(2-x\right)^{2}x}+\frac{\left(x+2\right)\left(x-2\right)x}{\left(x-2\right)^{2}x}\)
- step6: Rewrite the expression:
\(\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)^{2}}-\frac{x\times x}{x\left(x-2\right)^{2}}+\frac{\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\)
- step7: Transform the expression:
\(\frac{\left(x+4\right)\left(x-2\right)-x\times x+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\)
- step8: Multiply the terms:
\(\frac{x^{2}+2x-8-x\times x+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\)
- step9: Multiply the terms:
\(\frac{x^{2}+2x-8-x^{2}+\left(x+2\right)\left(x-2\right)x}{x\left(x-2\right)^{2}}\)
- step10: Multiply the terms:
\(\frac{x^{2}+2x-8-x^{2}+x^{3}-4x}{x\left(x-2\right)^{2}}\)
- step11: Calculate:
\(\frac{-2x-8+x^{3}}{x\left(x-2\right)^{2}}\)
- step12: Expand the expression:
\(\frac{-2x-8+x^{3}}{x^{3}-4x^{2}+4x}\)
Here are the simplified results for each of the expressions:
1. **Expression:** \( \frac{x}{x-3} + \frac{2}{3-x} \)
**Simplified Result:** \( \frac{x-2}{x-3} \)
2. **Expression:** \( \frac{x}{x+3} - \frac{2}{3+x} \)
**Simplified Result:** \( \frac{x-2}{x+3} \)
3. **Expression:** \( \frac{2x}{x-3} + \frac{x+1}{9-x^2} \)
**Simplified Result:** \( \frac{5x + 2x^2 - 1}{x^2 - 9} \)
4. **Expression:** \( \frac{3}{x^2 - 3x - 4} - \frac{x+1}{4-x} \)
**Simplified Result:** \( \frac{4 + x^2 + 2x}{x^2 - 3x - 4} \)
5. **Expression:** \( \frac{x}{2x^2 + 11x + 5} - \frac{5}{5+x} \)
**Simplified Result:** \( -\frac{9x + 5}{2x^2 + 11x + 5} \)
6. **Expression:** \( \frac{x}{4-x} - \frac{2x-24}{x^2 - 4x} \)
**Simplified Result:** \( -\frac{x + 6}{x} \)
7. **Expression:** \( \frac{3}{6x + 6} - \frac{2-x}{6x} \)
**Simplified Result:** \( \frac{2x - 2 + x^2}{6x^2 + 6x} \)
8. **Expression:** \( \frac{x+4}{x^2 - 2x} - \frac{x}{(2-x)^2} + \frac{x+2}{x-2} \)
**Simplified Result:** \( \frac{-2x - 8 + x^3}{x^3 - 4x^2 + 4x} \)
9. **Expression:** \( \frac{x+2}{4x^2 - 2x + 1} - \frac{8x+1}{8x^3 + 1} \)
**Simplified Result:** \( \frac{2x^2 - 3x + 1}{8x^3 + 1} \)
These results represent the simplified forms of the given expressions. If you need further assistance or explanations for any specific expression, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution