Answer
Here are the results for the identities:
1. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) – True
2. \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) – True
3. \( \sin (\pi-x)=\sin x \) – True
4. \( \sin \theta \cot \theta=\cos \theta \) – True
5. \( (\sin x+\cos x)^{2}=1+\sin 2 x \) – True
6. \( \sec y-\cos y=\tan y \sin y \) – True
7. \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) – Cannot determine
8. \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) – False
9. \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \) – Cannot determine
If you need help with the identities that couldn't be evaluated, let me know!
Solution
Verify the identity by following steps:
- step0: Verify:
\(\sin\left(\frac{\pi }{2}+x\right)=\cos\left(x\right)\)
- step1: Choose a side to work on:
\(\cos\left(x\right)=\cos\left(x\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \sin \theta \cot \theta=\cos \theta \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\sin\left(\theta \right)\cot\left(\theta \right)=\cos\left(\theta \right)\)
- step1: Choose a side to work on:
\(\cos\left(\theta \right)=\cos\left(\theta \right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \sin (\pi-x)=\sin x \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\sin\left(\pi -x\right)=\sin\left(x\right)\)
- step1: Choose a side to work on:
\(\sin\left(x\right)=\sin\left(x\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \sec y-\cos y=\tan y \sin y \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\sec\left(y\right)-\cos\left(y\right)=\tan\left(y\right)\sin\left(y\right)\)
- step1: Choose a side to work on:
\(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\tan\left(y\right)\sin\left(y\right)\)
- step2: Choose the other side to work on:
\(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}\)
- step3: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( (\sin x+\cos x)^{2}=1+\sin 2 x \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\left(\sin\left(x\right)+\cos\left(x\right)\right)^{2}=1+\sin\left(2x\right)\)
- step1: Choose a side to work on:
\(\sin\left(2x\right)+1=1+\sin\left(2x\right)\)
- step2: Calculate:
\(1+\sin\left(2x\right)=1+\sin\left(2x\right)\)
- step3: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\cos\left(\frac{\pi }{2}-x\right)=\sin\left(x\right)\)
- step1: Choose a side to work on:
\(\sin\left(x\right)=\sin\left(x\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\cot^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\)
- step1: Choose a side to work on:
\(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\)
- step2: Choose the other side to work on:
\(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\frac{\sin^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}\)
- step3: Verify the identity:
\(\textrm{false}\)
Here are the results for the identities you provided:
1. **Identity**: \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \)
**Result**: True
2. **Identity**: \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \)
**Result**: True
3. **Identity**: \( \sin (\pi-x)=\sin x \)
**Result**: True
4. **Identity**: \( \sin \theta \cot \theta=\cos \theta \)
**Result**: True
5. **Identity**: \( (\sin x+\cos x)^{2}=1+\sin 2 x \)
**Result**: True
6. **Identity**: \( \sec y-\cos y=\tan y \sin y \)
**Result**: True
7. **Identity**: \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \)
**Result**: Calculation timeout. This identity may be too complex to evaluate directly.
8. **Identity**: \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \)
**Result**: False
9. **Identity**: \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \)
**Result**: Unsupported calculation.
If you need further assistance with the identities that timed out or were unsupported, please let me know!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution