Question
upstudy study bank question image url

42-58 Prove the identity. 42. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) 43. \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) 44. \( \sin (\pi-x)=\sin x \) 45. \( \sin \theta \cot \theta=\cos \theta \) 46. \( (\sin x+\cos x)^{2}=1+\sin 2 x \) 47. \( \sec y-\cos y=\tan y \sin y \) 48. \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) 49. \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) 50. \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \)

Ask by Williams Sanders. in South Africa
Feb 28,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the results for the identities: 1. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) – True 2. \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) – True 3. \( \sin (\pi-x)=\sin x \) – True 4. \( \sin \theta \cot \theta=\cos \theta \) – True 5. \( (\sin x+\cos x)^{2}=1+\sin 2 x \) – True 6. \( \sec y-\cos y=\tan y \sin y \) – True 7. \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) – Cannot determine 8. \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) – False 9. \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \) – Cannot determine If you need help with the identities that couldn't be evaluated, let me know!

Solution

Verify the identity by following steps: - step0: Verify: \(\sin\left(\frac{\pi }{2}+x\right)=\cos\left(x\right)\) - step1: Choose a side to work on: \(\cos\left(x\right)=\cos\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sin \theta \cot \theta=\cos \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\sin\left(\theta \right)\cot\left(\theta \right)=\cos\left(\theta \right)\) - step1: Choose a side to work on: \(\cos\left(\theta \right)=\cos\left(\theta \right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sin (\pi-x)=\sin x \) is always true. Verify the identity by following steps: - step0: Verify: \(\sin\left(\pi -x\right)=\sin\left(x\right)\) - step1: Choose a side to work on: \(\sin\left(x\right)=\sin\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sec y-\cos y=\tan y \sin y \) is always true. Verify the identity by following steps: - step0: Verify: \(\sec\left(y\right)-\cos\left(y\right)=\tan\left(y\right)\sin\left(y\right)\) - step1: Choose a side to work on: \(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\tan\left(y\right)\sin\left(y\right)\) - step2: Choose the other side to work on: \(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (\sin x+\cos x)^{2}=1+\sin 2 x \) is always true. Verify the identity by following steps: - step0: Verify: \(\left(\sin\left(x\right)+\cos\left(x\right)\right)^{2}=1+\sin\left(2x\right)\) - step1: Choose a side to work on: \(\sin\left(2x\right)+1=1+\sin\left(2x\right)\) - step2: Calculate: \(1+\sin\left(2x\right)=1+\sin\left(2x\right)\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) is always true. Verify the identity by following steps: - step0: Verify: \(\cos\left(\frac{\pi }{2}-x\right)=\sin\left(x\right)\) - step1: Choose a side to work on: \(\sin\left(x\right)=\sin\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\cot^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\) - step2: Choose the other side to work on: \(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\frac{\sin^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}\) - step3: Verify the identity: \(\textrm{false}\) Here are the results for the identities you provided: 1. **Identity**: \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) **Result**: True 2. **Identity**: \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) **Result**: True 3. **Identity**: \( \sin (\pi-x)=\sin x \) **Result**: True 4. **Identity**: \( \sin \theta \cot \theta=\cos \theta \) **Result**: True 5. **Identity**: \( (\sin x+\cos x)^{2}=1+\sin 2 x \) **Result**: True 6. **Identity**: \( \sec y-\cos y=\tan y \sin y \) **Result**: True 7. **Identity**: \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) **Result**: Calculation timeout. This identity may be too complex to evaluate directly. 8. **Identity**: \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) **Result**: False 9. **Identity**: \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \) **Result**: Unsupported calculation. If you need further assistance with the identities that timed out or were unsupported, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Trigonometric identities have a long history, rooted in ancient civilizations. Mathematicians in Babylon and Greece studied angles and their relationships thousands of years ago. The sine, cosine, and tangent functions were initially developed in the context of astronomy to calculate positions of celestial bodies, and they evolved over time into the precise mathematical concepts we use today. Isn't it fascinating to think that the same principles that helped people predict astronomical events are still relevant and useful in modern mathematics? Now, when it comes to applying these identities in real life, think of how they pop up in engineering and physics! For instance, when designing roller coasters, engineers use sine and cosine to calculate forces and angles to ensure safety and maximize excitement. Additionally, in the realm of computer graphics, these identities help create realistic animations and simulate realistic movements. Whether you're launching a rocket or creating video games, these trigonometric principles keep the world spinning—literally!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy