Pregunta
upstudy study bank question image url

42-58 Prove the identity. 42. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) 43. \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) 44. \( \sin (\pi-x)=\sin x \) 45. \( \sin \theta \cot \theta=\cos \theta \) 46. \( (\sin x+\cos x)^{2}=1+\sin 2 x \) 47. \( \sec y-\cos y=\tan y \sin y \) 48. \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) 49. \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) 50. \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \)

Ask by Williams Sanders. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results for the identities: 1. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) – True 2. \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) – True 3. \( \sin (\pi-x)=\sin x \) – True 4. \( \sin \theta \cot \theta=\cos \theta \) – True 5. \( (\sin x+\cos x)^{2}=1+\sin 2 x \) – True 6. \( \sec y-\cos y=\tan y \sin y \) – True 7. \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) – Cannot determine 8. \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) – False 9. \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \) – Cannot determine If you need help with the identities that couldn't be evaluated, let me know!

Solución

Verify the identity by following steps: - step0: Verify: \(\sin\left(\frac{\pi }{2}+x\right)=\cos\left(x\right)\) - step1: Choose a side to work on: \(\cos\left(x\right)=\cos\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sin \theta \cot \theta=\cos \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\sin\left(\theta \right)\cot\left(\theta \right)=\cos\left(\theta \right)\) - step1: Choose a side to work on: \(\cos\left(\theta \right)=\cos\left(\theta \right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sin (\pi-x)=\sin x \) is always true. Verify the identity by following steps: - step0: Verify: \(\sin\left(\pi -x\right)=\sin\left(x\right)\) - step1: Choose a side to work on: \(\sin\left(x\right)=\sin\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sec y-\cos y=\tan y \sin y \) is always true. Verify the identity by following steps: - step0: Verify: \(\sec\left(y\right)-\cos\left(y\right)=\tan\left(y\right)\sin\left(y\right)\) - step1: Choose a side to work on: \(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\tan\left(y\right)\sin\left(y\right)\) - step2: Choose the other side to work on: \(\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}=\frac{\sin^{2}\left(y\right)}{\cos\left(y\right)}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (\sin x+\cos x)^{2}=1+\sin 2 x \) is always true. Verify the identity by following steps: - step0: Verify: \(\left(\sin\left(x\right)+\cos\left(x\right)\right)^{2}=1+\sin\left(2x\right)\) - step1: Choose a side to work on: \(\sin\left(2x\right)+1=1+\sin\left(2x\right)\) - step2: Calculate: \(1+\sin\left(2x\right)=1+\sin\left(2x\right)\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) is always true. Verify the identity by following steps: - step0: Verify: \(\cos\left(\frac{\pi }{2}-x\right)=\sin\left(x\right)\) - step1: Choose a side to work on: \(\sin\left(x\right)=\sin\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\cot^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\tan^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\) - step2: Choose the other side to work on: \(\frac{\cos^{2}\left(\theta \right)+\sec^{2}\left(\theta \right)\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}=\frac{\sin^{2}\left(\theta \right)+\csc^{2}\left(\theta \right)\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}\) - step3: Verify the identity: \(\textrm{false}\) Here are the results for the identities you provided: 1. **Identity**: \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \) **Result**: True 2. **Identity**: \( \sin \left(\frac{\pi}{2}+x\right)=\cos x \) **Result**: True 3. **Identity**: \( \sin (\pi-x)=\sin x \) **Result**: True 4. **Identity**: \( \sin \theta \cot \theta=\cos \theta \) **Result**: True 5. **Identity**: \( (\sin x+\cos x)^{2}=1+\sin 2 x \) **Result**: True 6. **Identity**: \( \sec y-\cos y=\tan y \sin y \) **Result**: True 7. **Identity**: \( \tan 2 \alpha-\sin ^{2} \alpha=\tan ^{2} \alpha \sin ^{2} \alpha \) **Result**: Calculation timeout. This identity may be too complex to evaluate directly. 8. **Identity**: \( \cot ^{2} \theta+\sec ^{2} \theta=\tan ^{2} \theta+\csc ^{2} \theta \) **Result**: False 9. **Identity**: \( 2 \csc 2 t=\sec ^{2} \csc ^{2} \) **Result**: Unsupported calculation. If you need further assistance with the identities that timed out or were unsupported, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Trigonometric identities have a long history, rooted in ancient civilizations. Mathematicians in Babylon and Greece studied angles and their relationships thousands of years ago. The sine, cosine, and tangent functions were initially developed in the context of astronomy to calculate positions of celestial bodies, and they evolved over time into the precise mathematical concepts we use today. Isn't it fascinating to think that the same principles that helped people predict astronomical events are still relevant and useful in modern mathematics? Now, when it comes to applying these identities in real life, think of how they pop up in engineering and physics! For instance, when designing roller coasters, engineers use sine and cosine to calculate forces and angles to ensure safety and maximize excitement. Additionally, in the realm of computer graphics, these identities help create realistic animations and simulate realistic movements. Whether you're launching a rocket or creating video games, these trigonometric principles keep the world spinning—literally!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad