Compute the determinant using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column. \[ \left|\begin{array}{rrr} 2 & 0 & 3 \\ 2 & 4 & 3 \\ 0 & 4 & -1 \end{array}\right| \] Compute the determinant using a cofactor expansion across the first row. Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer.) A. Using this expansion, the determinant is \( -(0)(-2)+(4)(-2)-(4)(0)= \) \( \square \) . B. Using this expansion, the determinant is \( -(2)(-16)+(0)(-2)-(3)(8)= \) \( \square \) . C. Using this expansion, the determinant is \( (0)(-2)-(4)(-2)+(4)(0)= \) \( \square \) . D. Using this expansion, the determinant is \( (2)(-16)-(0)(-2)+(3)(8)=-8 \). Compute the determinant using a cofactor expansion down the second column. Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer.) A. Using this expansion, the determinant is \( (2)(-16)-(0)(-2)+(3)(8)= \) \( \square \) . B. Using this expansion, the determinant is \( -(0)(-2)+(4)(-2)-(4)(0)= \) \( \square \) . C. Using this expansion, the determinant is \( -(2)(-16)+(0)(-2)-(3)(8)= \) \( \square \) . D. Using this expansion, the determinant is \( (0)(-2)-(4)(-2)+(4)(0)= \) \( \square \) .
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To compute the determinant using a cofactor expansion across the first row, we'll examine the entries of the first row: \(2\), \(0\), and \(3\). The determinant can be expressed as: \[ \text{det} = 2 \cdot \text{det}\begin{pmatrix} 4 & 3 \\ 4 & -1 \end{pmatrix} - 0 \cdot \text{det}\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} + 3 \cdot \text{det}\begin{pmatrix} 2 & 4 \\ 0 & 4 \end{pmatrix} \] Calculating the determinants of the 2x2 matrices: 1. \(\text{det}\begin{pmatrix} 4 & 3 \\ 4 & -1 \end{pmatrix} = 4 \cdot (-1) - 3 \cdot 4 = -4 - 12 = -16\) 2. \(\text{det}\begin{pmatrix} 2 & 4 \\ 0 & 4 \end{pmatrix} = 2 \cdot 4 - 4 \cdot 0 = 8\) Thus, \[ \text{det} = 2 \cdot (-16) + 0 + 3 \cdot 8 = -32 + 0 + 24 = -8 \] So the first selection becomes: D. Using this expansion, the determinant is \( (2)(-16)-(0)(-2)+(3)(8)=-8 \). Now, for the cofactor expansion down the second column, we consider the entries \(0\), \(4\), and \(4\): \[ \text{det} = -0 \cdot \text{det}\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} + 4 \cdot \text{det}\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} - 4 \cdot \text{det}\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \] Calculating the necessary determinants: 1. \(\text{det}\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} = 2 \cdot (-1) - 3 \cdot 0 = -2\) 2. \(\text{det}\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = 2 \cdot 4 - 0 \cdot 0 = 8\) So now, substituting back: \[ \text{det} = -0 + 4 \cdot (-2) - 4 \cdot 8 = 0 - 8 - 32 = -40 \] So, the correct selection becomes: C. Using this expansion, the determinant is \( -(2)(-16)+(0)(-2)-(3)(8)= \) \(-40\). In summary: D. Using this expansion, the determinant is \( (2)(-16)-(0)(-2)+(3)(8)=-8 \). C. Using this expansion, the determinant is \( -(2)(-16)+(0)(-2)-(3)(8)=-40 \).