nd the value of the ratios below in terms of \( \sqrt{2} \) and \( \sqrt{3} \) using the sum or fference of two special angles. Simplify your answers. \( \begin{array}{llll}\cos 15^{\circ} \\ \left.\text { [Hint: } 15^{\circ}=60^{\circ}-45^{\circ}\right] & 4.2 & \sin 75^{\circ} \\ 3 \cos 105^{\circ} & 4.4 & \sin 195^{\circ} \\ 5 & \sin 165^{\circ} & 4.6 & \tan 15^{\circ}\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To find the values of the trigonometric functions listed, let's simplify them using angle sum or difference identities: For \( \cos 15^{\circ} = \cos(60^{\circ} - 45^{\circ}) \): Using the cosine difference identity, we have: \[ \cos(60^{\circ})\cos(45^{\circ}) + \sin(60^{\circ})\sin(45^{\circ}) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] Now for \( \sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ}) \): Using the sine sum identity, we have: \[ \sin(45^{\circ})\cos(30^{\circ}) + \cos(45^{\circ})\sin(30^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Next, for \( \cos 105^{\circ} = \cos(60^{\circ} + 45^{\circ}) \): Using the cosine sum identity: \[ -\left(\cos(60^{\circ})\cos(45^{\circ}) - \sin(60^{\circ})\sin(45^{\circ})\right) = -\left( \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \right) = -\left(\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}\right) = \frac{\sqrt{6} - \sqrt{2}}{4} \] For \( \sin 195^{\circ} = \sin(180^{\circ} + 15^{\circ}) \): Here, we know that: \[ \sin(195^{\circ}) = -\sin(15^{\circ}) = -\left(\sin(60^{\circ} - 45^{\circ})\right) = -\left(\sin(60^{\circ}) \cos(45^{\circ}) - \cos(60^{\circ}) \sin(45^{\circ})\right) \] This gives: \[ -\left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) = -\left(\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4} \] For \( \sin 165^{\circ} = \sin(180^{\circ} - 15^{\circ}) \): Thus: \[ \sin(165^{\circ}) = \sin(15^{\circ}) = \frac{\sqrt{6} - \sqrt{2}}{4} \] Lastly, for \( \tan 15^{\circ} \): \[ \tan(15^{\circ}) = \frac{\tan(60^{\circ} - 45^{\circ})}{1 + \tan(60^{\circ})\tan(45^{\circ})} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3} + 1}}{1 + \sqrt{3}} = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] Summarizing the values: - \( \cos 15^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4} \) - \( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt