Pregunta
upstudy study bank question image url

nd the value of the ratios below in terms of \( \sqrt{2} \) and \( \sqrt{3} \) using the sum or fference of two special angles. Simplify your answers. \( \begin{array}{llll}\cos 15^{\circ} \\ \left.\text { [Hint: } 15^{\circ}=60^{\circ}-45^{\circ}\right] & 4.2 & \sin 75^{\circ} \\ 3 \cos 105^{\circ} & 4.4 & \sin 195^{\circ} \\ 5 & \sin 165^{\circ} & 4.6 & \tan 15^{\circ}\end{array} \)

Ask by Hammond Romero. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \tan 15^{\circ} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \]

Solución

To find the values of the trigonometric functions in terms of \( \sqrt{2} \) and \( \sqrt{3} \), we will use the sum or difference of angles where applicable. Let's solve each part step by step. ### 1. \( \cos 15^{\circ} \) Using the hint \( 15^{\circ} = 60^{\circ} - 45^{\circ} \), we apply the cosine difference formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] where \( a = 60^{\circ} \) and \( b = 45^{\circ} \). Calculating: - \( \cos 60^{\circ} = \frac{1}{2} \) - \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) Now substituting into the formula: \[ \cos 15^{\circ} = \cos 60^{\circ} \cos 45^{\circ} + \sin 60^{\circ} \sin 45^{\circ} \] \[ = \left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right) \] \[ = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] ### 2. \( \sin 75^{\circ} \) Using the identity \( 75^{\circ} = 45^{\circ} + 30^{\circ} \): \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] where \( a = 45^{\circ} \) and \( b = 30^{\circ} \). Calculating: - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \sin 30^{\circ} = \frac{1}{2} \) - \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) Now substituting into the formula: \[ \sin 75^{\circ} = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ} \] \[ = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] ### 3. \( \cos 105^{\circ} \) Using \( 105^{\circ} = 180^{\circ} - 75^{\circ} \): \[ \cos(180^{\circ} - x) = -\cos x \] Thus, \[ \cos 105^{\circ} = -\cos 75^{\circ} \] From the previous calculation, we have: \[ \cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4} \] So, \[ \cos 105^{\circ} = -\frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4} \] ### 4. \( \sin 195^{\circ} \) Using \( 195^{\circ} = 180^{\circ} + 15^{\circ} \): \[ \sin(180^{\circ} + x) = -\sin x \] Thus, \[ \sin 195^{\circ} = -\sin 15^{\circ} \] Using the sine difference formula for \( \sin 15^{\circ} \): \[ \sin 15^{\circ} = \sin(60^{\circ} - 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ} \] \[ = \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) \] \[ = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \] Thus, \[ \sin 195^{\circ} = -\frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4} \] ### 5. \( \sin 165^{\circ} \) Using \( 165^{\circ} = 180^{\circ} - 15^{\circ} \): \[ \sin(180^{\circ} - x) = \sin x \] Thus, \[ \sin 165^{\circ} = \sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4} \] ### 6. \( \tan 15^{\circ} \) Using the identity \( \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \): \[ \tan 15^{\circ} = \tan(60^{\circ} - 45^{\circ}) = \frac{\tan 60^{\circ} - \tan 45^{\circ}}{1 + \tan 60^{\circ} \tan 45^{\circ}} \] Calculating: - \( \tan 60^{\circ} = \sqrt{3} \) - \( \tan 45^{\circ} = 1 \) Substituting: \[ \tan 15^{\circ} = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} = \

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the values of the trigonometric functions listed, let's simplify them using angle sum or difference identities: For \( \cos 15^{\circ} = \cos(60^{\circ} - 45^{\circ}) \): Using the cosine difference identity, we have: \[ \cos(60^{\circ})\cos(45^{\circ}) + \sin(60^{\circ})\sin(45^{\circ}) = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] Now for \( \sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ}) \): Using the sine sum identity, we have: \[ \sin(45^{\circ})\cos(30^{\circ}) + \cos(45^{\circ})\sin(30^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] Next, for \( \cos 105^{\circ} = \cos(60^{\circ} + 45^{\circ}) \): Using the cosine sum identity: \[ -\left(\cos(60^{\circ})\cos(45^{\circ}) - \sin(60^{\circ})\sin(45^{\circ})\right) = -\left( \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \right) = -\left(\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}\right) = \frac{\sqrt{6} - \sqrt{2}}{4} \] For \( \sin 195^{\circ} = \sin(180^{\circ} + 15^{\circ}) \): Here, we know that: \[ \sin(195^{\circ}) = -\sin(15^{\circ}) = -\left(\sin(60^{\circ} - 45^{\circ})\right) = -\left(\sin(60^{\circ}) \cos(45^{\circ}) - \cos(60^{\circ}) \sin(45^{\circ})\right) \] This gives: \[ -\left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) = -\left(\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4} \] For \( \sin 165^{\circ} = \sin(180^{\circ} - 15^{\circ}) \): Thus: \[ \sin(165^{\circ}) = \sin(15^{\circ}) = \frac{\sqrt{6} - \sqrt{2}}{4} \] Lastly, for \( \tan 15^{\circ} \): \[ \tan(15^{\circ}) = \frac{\tan(60^{\circ} - 45^{\circ})}{1 + \tan(60^{\circ})\tan(45^{\circ})} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3} + 1}}{1 + \sqrt{3}} = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] Summarizing the values: - \( \cos 15^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4} \) - \( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad