Question
upstudy study bank question image url

1 Find the gradient of the following curves at the point where \( x=3 \). a \( y=\frac{x^{2}}{x-1} \quad \) b \( y=x \ln x \quad \) c \( f(x)=\frac{2 x^{2}-1}{x+3} \quad \) d \( s=\frac{t+5}{t^{2}+1} \quad \) e \( y=x^{2 x} \)

Ask by Sanders Barber. in Vietnam
Mar 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

At \( x=3 \): - **a)** The gradient is \( \frac{3}{4} \). - **b)** The gradient is \( \ln3 + 1 \). - **c)** The gradient is \( \frac{55}{36} \). - **d)** The gradient is \( -\frac{19}{50} \). - **e)** The gradient is \( 1458(\ln3 + 1) \).

Solution

**(a) For the curve** \( y=\frac{x^2}{x-1} \): 1. Write \( u=x^2 \) and \( v=x-1 \). Their derivatives are \[ u'=2x,\quad v'=1. \] 2. Apply the quotient rule: \[ y'=\frac{u'v-uv'}{v^2}=\frac{2x(x-1)-x^2}{(x-1)^2}. \] 3. Simplify the numerator: \[ 2x(x-1)-x^2=2x^2-2x-x^2=x^2-2x=x(x-2). \] 4. So, \[ y'=\frac{x(x-2)}{(x-1)^2}. \] 5. At \( x=3 \): \[ y'(3)=\frac{3(3-2)}{(3-1)^2}=\frac{3\cdot1}{4}=\frac{3}{4}. \] --- **(b) For the curve** \( y=x\ln x \): 1. Use the product rule with \( u=x \) and \( v=\ln x \). Then, \[ u'=1,\quad v'=\frac{1}{x}. \] 2. The derivative is \[ y'=u'v+uv'= \ln x + x\left(\frac{1}{x}\right)=\ln x+1. \] 3. At \( x=3 \): \[ y'(3)=\ln3+1. \] --- **(c) For the curve** \( f(x)=\frac{2x^2-1}{x+3} \): 1. Let \( u=2x^2-1 \) (with \( u'=4x \)) and \( v=x+3 \) (with \( v'=1 \)). 2. The quotient rule gives: \[ f'(x)=\frac{4x(x+3)-(2x^2-1)}{(x+3)^2}. \] 3. Expand and simplify the numerator: \[ 4x^2+12x-2x^2+1=2x^2+12x+1. \] 4. So, \[ f'(x)=\frac{2x^2+12x+1}{(x+3)^2}. \] 5. At \( x=3 \): \[ f'(3)=\frac{2(9)+12(3)+1}{(3+3)^2}=\frac{18+36+1}{36}=\frac{55}{36}. \] --- **(d) For the curve** \( s=\frac{t+5}{t^2+1} \): 1. Let \( u=t+5 \) (with \( u'=1 \)) and \( v=t^2+1 \) (with \( v'=2t \)). 2. Apply the quotient rule: \[ s'=\frac{1\cdot(t^2+1)-(t+5)(2t)}{(t^2+1)^2}. \] 3. Expand the numerator: \[ t^2+1-2t^2-10t=-t^2-10t+1. \] 4. So, \[ s'=\frac{-t^2-10t+1}{(t^2+1)^2}. \] 5. At \( t=3 \): \[ s'(3)=\frac{-(9)-10(3)+1}{(9+1)^2}=\frac{-9-30+1}{100}=\frac{-38}{100}=-\frac{19}{50}. \] --- **(e) For the curve** \( y=x^{2x} \): 1. Rewrite the function using the exponential form: \[ y=x^{2x}=e^{2x\ln x}. \] 2. Differentiate by recognizing that if \( y=e^{g(x)} \) then \( y'=e^{g(x)}g'(x) \). Here, \[ g(x)=2x\ln x. \] 3. Differentiate \( g(x) \) using the product rule: \[ g'(x)=2\ln x+2. \] 4. So, \[ y'=e^{2x\ln x}(2\ln x+2)=x^{2x}(2\ln x+2). \] 5. At \( x=3 \): \[ y'(3)=3^{6}\left(2\ln 3+2\right)=729\cdot2\left(\ln3+1\right)=1458\left(\ln3+1\right). \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the gradient of the curves at the point where \( x=3 \), we need to compute the derivative of each function and then evaluate it at \( x=3 \). 1. For \( y=\frac{x^{2}}{x-1} \): - First, we use the quotient rule: \[ y' = \frac{(x-1)(2x) - (x^2)(1)}{(x-1)^2} = \frac{2x^2 - 2x - x^2}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2} \] - Now, substitute \( x=3 \): \[ y'(3) = \frac{3^2 - 2 \cdot 3}{(3-1)^2} = \frac{9 - 6}{4} = \frac{3}{4} \] 2. For \( y=x \ln x \): - We apply the product rule: \[ y' = \ln x + 1 \] - Thus, substituting \( x=3 \): \[ y'(3) = \ln(3) + 1 \] - Approximate this as \( y'(3) \approx 1.0986 + 1 \approx 2.0986 \). 3. For \( f(x)=\frac{2 x^{2}-1}{x+3} \): - Using the quotient rule: \[ f'(x) = \frac{(x+3)(4x) - (2x^2-1)(1)}{(x+3)^2} = \frac{4x^2 + 12x - 2x^2 + 1}{(x+3)^2} = \frac{2x^2 + 12x + 1}{(x+3)^2} \] - Substituting \( x=3 \): \[ f'(3) = \frac{2(3^2) + 12(3) + 1}{(3+3)^2} = \frac{18 + 36 + 1}{36} = \frac{55}{36} \] 4. Also for \( s=\frac{t+5}{t^{2}+1} \): - Using the quotient rule again: \[ s'(t) = \frac{(t^2+1)(1) - (t+5)(2t)}{(t^2+1)^2} = \frac{t^2 + 1 - (2t^2 + 10t)}{(t^2+1)^2} = \frac{-t^2 - 10t + 1}{(t^2+1)^2} \] - Substituting \( t=3 \): \[ s'(3) = \frac{-3^2 - 10 \cdot 3 + 1}{(3^2+1)^2} = \frac{-9 - 30 + 1}{16} = \frac{-38}{16} = \frac{-19}{8} \] 5. For \( y=x^{2 x} \): - Here we use logarithmic differentiation: \[ \ln(y) = 2x \ln(x) \] - Differentiating: \[ \frac{y'}{y} = 2 \ln x + 2 \implies y' = y(2 \ln x + 2) = x^{2x}(2 \ln x + 2) \] - Finally substituting \( x=3 \): \[ y'(3) = 3^{6}(2 \ln 3 + 2) \approx 729(2 \cdot 1.0986 + 2) \approx 729(4.1972) \approx 3055.4 \] Now we have the gradients at the point \( x=3 \): - a) \( \frac{3}{4} \) - b) \( \ln(3) + 1 \approx 2.0986 \) - c) \( \frac{55}{36} \) - d) \( \frac{-19}{8} \) - e) \( 3055.4 \) (approximately)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy