Pregunta
upstudy study bank question image url

1 Find the gradient of the following curves at the point where \( x=3 \). a \( y=\frac{x^{2}}{x-1} \quad \) b \( y=x \ln x \quad \) c \( f(x)=\frac{2 x^{2}-1}{x+3} \quad \) d \( s=\frac{t+5}{t^{2}+1} \quad \) e \( y=x^{2 x} \)

Ask by Sanders Barber. in Vietnam
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At \( x=3 \): - **a)** The gradient is \( \frac{3}{4} \). - **b)** The gradient is \( \ln3 + 1 \). - **c)** The gradient is \( \frac{55}{36} \). - **d)** The gradient is \( -\frac{19}{50} \). - **e)** The gradient is \( 1458(\ln3 + 1) \).

Solución

**(a) For the curve** \( y=\frac{x^2}{x-1} \): 1. Write \( u=x^2 \) and \( v=x-1 \). Their derivatives are \[ u'=2x,\quad v'=1. \] 2. Apply the quotient rule: \[ y'=\frac{u'v-uv'}{v^2}=\frac{2x(x-1)-x^2}{(x-1)^2}. \] 3. Simplify the numerator: \[ 2x(x-1)-x^2=2x^2-2x-x^2=x^2-2x=x(x-2). \] 4. So, \[ y'=\frac{x(x-2)}{(x-1)^2}. \] 5. At \( x=3 \): \[ y'(3)=\frac{3(3-2)}{(3-1)^2}=\frac{3\cdot1}{4}=\frac{3}{4}. \] --- **(b) For the curve** \( y=x\ln x \): 1. Use the product rule with \( u=x \) and \( v=\ln x \). Then, \[ u'=1,\quad v'=\frac{1}{x}. \] 2. The derivative is \[ y'=u'v+uv'= \ln x + x\left(\frac{1}{x}\right)=\ln x+1. \] 3. At \( x=3 \): \[ y'(3)=\ln3+1. \] --- **(c) For the curve** \( f(x)=\frac{2x^2-1}{x+3} \): 1. Let \( u=2x^2-1 \) (with \( u'=4x \)) and \( v=x+3 \) (with \( v'=1 \)). 2. The quotient rule gives: \[ f'(x)=\frac{4x(x+3)-(2x^2-1)}{(x+3)^2}. \] 3. Expand and simplify the numerator: \[ 4x^2+12x-2x^2+1=2x^2+12x+1. \] 4. So, \[ f'(x)=\frac{2x^2+12x+1}{(x+3)^2}. \] 5. At \( x=3 \): \[ f'(3)=\frac{2(9)+12(3)+1}{(3+3)^2}=\frac{18+36+1}{36}=\frac{55}{36}. \] --- **(d) For the curve** \( s=\frac{t+5}{t^2+1} \): 1. Let \( u=t+5 \) (with \( u'=1 \)) and \( v=t^2+1 \) (with \( v'=2t \)). 2. Apply the quotient rule: \[ s'=\frac{1\cdot(t^2+1)-(t+5)(2t)}{(t^2+1)^2}. \] 3. Expand the numerator: \[ t^2+1-2t^2-10t=-t^2-10t+1. \] 4. So, \[ s'=\frac{-t^2-10t+1}{(t^2+1)^2}. \] 5. At \( t=3 \): \[ s'(3)=\frac{-(9)-10(3)+1}{(9+1)^2}=\frac{-9-30+1}{100}=\frac{-38}{100}=-\frac{19}{50}. \] --- **(e) For the curve** \( y=x^{2x} \): 1. Rewrite the function using the exponential form: \[ y=x^{2x}=e^{2x\ln x}. \] 2. Differentiate by recognizing that if \( y=e^{g(x)} \) then \( y'=e^{g(x)}g'(x) \). Here, \[ g(x)=2x\ln x. \] 3. Differentiate \( g(x) \) using the product rule: \[ g'(x)=2\ln x+2. \] 4. So, \[ y'=e^{2x\ln x}(2\ln x+2)=x^{2x}(2\ln x+2). \] 5. At \( x=3 \): \[ y'(3)=3^{6}\left(2\ln 3+2\right)=729\cdot2\left(\ln3+1\right)=1458\left(\ln3+1\right). \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the gradient of the curves at the point where \( x=3 \), we need to compute the derivative of each function and then evaluate it at \( x=3 \). 1. For \( y=\frac{x^{2}}{x-1} \): - First, we use the quotient rule: \[ y' = \frac{(x-1)(2x) - (x^2)(1)}{(x-1)^2} = \frac{2x^2 - 2x - x^2}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2} \] - Now, substitute \( x=3 \): \[ y'(3) = \frac{3^2 - 2 \cdot 3}{(3-1)^2} = \frac{9 - 6}{4} = \frac{3}{4} \] 2. For \( y=x \ln x \): - We apply the product rule: \[ y' = \ln x + 1 \] - Thus, substituting \( x=3 \): \[ y'(3) = \ln(3) + 1 \] - Approximate this as \( y'(3) \approx 1.0986 + 1 \approx 2.0986 \). 3. For \( f(x)=\frac{2 x^{2}-1}{x+3} \): - Using the quotient rule: \[ f'(x) = \frac{(x+3)(4x) - (2x^2-1)(1)}{(x+3)^2} = \frac{4x^2 + 12x - 2x^2 + 1}{(x+3)^2} = \frac{2x^2 + 12x + 1}{(x+3)^2} \] - Substituting \( x=3 \): \[ f'(3) = \frac{2(3^2) + 12(3) + 1}{(3+3)^2} = \frac{18 + 36 + 1}{36} = \frac{55}{36} \] 4. Also for \( s=\frac{t+5}{t^{2}+1} \): - Using the quotient rule again: \[ s'(t) = \frac{(t^2+1)(1) - (t+5)(2t)}{(t^2+1)^2} = \frac{t^2 + 1 - (2t^2 + 10t)}{(t^2+1)^2} = \frac{-t^2 - 10t + 1}{(t^2+1)^2} \] - Substituting \( t=3 \): \[ s'(3) = \frac{-3^2 - 10 \cdot 3 + 1}{(3^2+1)^2} = \frac{-9 - 30 + 1}{16} = \frac{-38}{16} = \frac{-19}{8} \] 5. For \( y=x^{2 x} \): - Here we use logarithmic differentiation: \[ \ln(y) = 2x \ln(x) \] - Differentiating: \[ \frac{y'}{y} = 2 \ln x + 2 \implies y' = y(2 \ln x + 2) = x^{2x}(2 \ln x + 2) \] - Finally substituting \( x=3 \): \[ y'(3) = 3^{6}(2 \ln 3 + 2) \approx 729(2 \cdot 1.0986 + 2) \approx 729(4.1972) \approx 3055.4 \] Now we have the gradients at the point \( x=3 \): - a) \( \frac{3}{4} \) - b) \( \ln(3) + 1 \approx 2.0986 \) - c) \( \frac{55}{36} \) - d) \( \frac{-19}{8} \) - e) \( 3055.4 \) (approximately)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad