Question
upstudy study bank question image url

\( \begin{array}{ll}\text { a) } 2^{m} \times 2^{n} \times 2^{-n} & \text { b) } a^{-m} \times a^{n} \times a^{m} \\ \text { c) }(a+b)^{-1} \times(a+b)^{-3} & \text { d) }(x+y) \times(x+y)^{-1} \\ \text { e) } \frac{12^{0}}{12^{0}} & \text { f) } \frac{12}{12^{0}} \\ \text { g) }\left(a^{2}\right)^{-1} \times 3 & \text { h) }\left(a^{-2}\right)^{-3} \\ \text { i) } \frac{a^{2}}{c} \times \frac{c^{2}}{a} & \text { j) }\left(\frac{a}{c}\right)^{-2} \times\left(\frac{c}{a}\right)^{2} \\ \text { k) } 3\left(10^{2}\right)^{-2} & \text { 1) } a\left(b^{a}\right)^{b}\end{array} \)

Ask by Curry Cruz. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: a) \( 2^{m} \) b) \( a^{n} \) c) \( \frac{1}{(a+b)^{4}} \) d) \( 1 \) e) \( 1 \) f) \( 12 \) g) \( \frac{3}{a^{2}} \) h) \( a^{6} \) i) \( ac \) j) \( \frac{c^{4}}{a^{4}} \) k) \( 0.0003 \) 1) \( ab^{ab} \) These are the simplified forms of the given expressions.

Solution

Simplify the expression by following steps: - step0: Solution: \(a^{-m}\times a^{n}\times a^{m}\) - step1: Multiply the terms: \(a^{-m+n+m}\) - step2: Add the terms: \(a^{n}\) Calculate or simplify the expression \( (x+y) \times (x+y)^{-1} \). Simplify the expression by following steps: - step0: Solution: \(\left(x+y\right)\left(x+y\right)^{-1}\) - step1: Express with a positive exponent: \(\left(x+y\right)\times \frac{1}{x+y}\) - step2: Reduce the fraction: \(1\times 1\) - step3: Multiply the terms: \(1\) Calculate or simplify the expression \( a\left(b^{a}\right)^{b} \). Simplify the expression by following steps: - step0: Solution: \(a\left(b^{a}\right)^{b}\) - step1: Multiply the exponents: \(ab^{ab}\) Calculate or simplify the expression \( \left(a^{-2}\right)^{-3} \). Simplify the expression by following steps: - step0: Solution: \(\left(a^{-2}\right)^{-3}\) - step1: Multiply the exponents: \(a^{-2\left(-3\right)}\) - step2: Multiply the numbers: \(a^{6}\) Calculate or simplify the expression \( \frac{12^{0}}{12^{0}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{12^{0}}{12^{0}}\) - step1: Evaluate the power: \(\frac{1}{12^{0}}\) - step2: Evaluate the power: \(\frac{1}{1}\) - step3: Divide the terms: \(1\) Calculate or simplify the expression \( \frac{12}{12^{0}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{12}{12^{0}}\) - step1: Evaluate the power: \(\frac{12}{1}\) - step2: Divide the terms: \(12\) Calculate or simplify the expression \( \left(a^{2}\right)^{-1} \times 3 \). Simplify the expression by following steps: - step0: Solution: \(\left(a^{2}\right)^{-1}\times 3\) - step1: Multiply the exponents: \(a^{2\left(-1\right)}\times 3\) - step2: Simplify: \(a^{-2}\times 3\) - step3: Reorder the terms: \(3a^{-2}\) - step4: Simplify: \(\frac{3}{a^{2}}\) Calculate or simplify the expression \( 2^{m} \times 2^{n} \times 2^{-n} \). Simplify the expression by following steps: - step0: Solution: \(2^{m}\times 2^{n}\times 2^{-n}\) - step1: Multiply the terms: \(2^{m+n-n}\) - step2: Calculate: \(2^{m}\) Calculate or simplify the expression \( (a+b)^{-1} \times (a+b)^{-3} \). Simplify the expression by following steps: - step0: Solution: \(\left(a+b\right)^{-1}\left(a+b\right)^{-3}\) - step1: Multiply the terms: \(\left(a+b\right)^{-4}\) - step2: Express with a positive exponent: \(\frac{1}{\left(a+b\right)^{4}}\) - step3: Expand the expression: \(\frac{1}{a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}}\) Calculate or simplify the expression \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{a}{c}\right)^{-2}\left(\frac{c}{a}\right)^{2}\) - step1: Evaluate the power: \(\frac{c^{2}}{a^{2}}\times \left(\frac{c}{a}\right)^{2}\) - step2: Rewrite the expression: \(\frac{c^{2}}{a^{2}}\times \frac{c^{2}}{a^{2}}\) - step3: Multiply the terms: \(\frac{c^{2}\times c^{2}}{a^{2}\times a^{2}}\) - step4: Multiply the terms: \(\frac{c^{4}}{a^{2}\times a^{2}}\) - step5: Multiply the terms: \(\frac{c^{4}}{a^{4}}\) Calculate or simplify the expression \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \). Simplify the expression by following steps: - step0: Solution: \(\frac{a^{2}}{c}\times \frac{c^{2}}{a}\) - step1: Reduce the fraction: \(ac\) Calculate or simplify the expression \( 3\left(10^{2}\right)^{-2} \). Calculate the value by following steps: - step0: Calculate: \(3\left(10^{2}\right)^{-2}\) - step1: Multiply the exponents: \(3\times 10^{2\left(-2\right)}\) - step2: Multiply the numbers: \(3\times 10^{-4}\) - step3: Evaluate the power: \(3\times \frac{1}{10000}\) - step4: Multiply: \(\frac{3}{10000}\) Here are the simplified results for each expression: a) \( 2^{m} \times 2^{n} \times 2^{-n} \) - **Step**: Combine the exponents. - **Result**: \( 2^{m} \) --- b) \( a^{-m} \times a^{n} \times a^{m} \) - **Step**: Combine the exponents. - **Result**: \( a^{n} \) --- c) \( (a+b)^{-1} \times (a+b)^{-3} \) - **Step**: Combine the exponents. - **Result**: \( (a+b)^{-4} = \frac{1}{(a+b)^{4}} \) --- d) \( (x+y) \times (x+y)^{-1} \) - **Step**: This is the product of a term and its reciprocal. - **Result**: \( 1 \) --- e) \( \frac{12^{0}}{12^{0}} \) - **Step**: Any non-zero number raised to the power of 0 is 1. - **Result**: \( 1 \) --- f) \( \frac{12}{12^{0}} \) - **Step**: Simplify using \( 12^{0} = 1 \). - **Result**: \( 12 \) --- g) \( \left(a^{2}\right)^{-1} \times 3 \) - **Step**: Apply the negative exponent. - **Result**: \( \frac{3}{a^{2}} \) --- h) \( \left(a^{-2}\right)^{-3} \) - **Step**: Apply the negative exponent. - **Result**: \( a^{6} \) --- i) \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \) - **Step**: Multiply the fractions. - **Result**: \( \frac{ac^{2}}{a^{2}} = ac \) --- j) \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \) - **Step**: Apply the negative exponent and simplify. - **Result**: \( \frac{c^{4}}{a^{4}} \) --- k) \( 3\left(10^{2}\right)^{-2} \) - **Step**: Apply the negative exponent. - **Result**: \( \frac{3}{10000} \) or \( 0.0003 \) --- 1) \( a\left(b^{a}\right)^{b} \) - **Step**: Simplify the expression. - **Result**: \( ab^{ab} \) --- These results summarize the simplifications for each expression provided.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

If you're diving into the world of exponents and their rules, it's worth noting that the laws of exponents date back to ancient civilizations, where early mathematicians utilized similar principles in various mathematical writings. The modern notation and rules we use today were refined in the 16th century, coming largely from European mathematicians who aimed to standardize mathematical communication. When applying exponent rules in real-world scenarios, consider how they simplify calculations. For example, you can use exponent rules in finance when calculating compound interest, where the base represents your investment, and the exponent represents the number of compounding periods. Simplifying those calculations can lead to clearer insights into your growth potential over time!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy