Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { a) } 2^{m} \times 2^{n} \times 2^{-n} & \text { b) } a^{-m} \times a^{n} \times a^{m} \\ \text { c) }(a+b)^{-1} \times(a+b)^{-3} & \text { d) }(x+y) \times(x+y)^{-1} \\ \text { e) } \frac{12^{0}}{12^{0}} & \text { f) } \frac{12}{12^{0}} \\ \text { g) }\left(a^{2}\right)^{-1} \times 3 & \text { h) }\left(a^{-2}\right)^{-3} \\ \text { i) } \frac{a^{2}}{c} \times \frac{c^{2}}{a} & \text { j) }\left(\frac{a}{c}\right)^{-2} \times\left(\frac{c}{a}\right)^{2} \\ \text { k) } 3\left(10^{2}\right)^{-2} & \text { 1) } a\left(b^{a}\right)^{b}\end{array} \)

Ask by Curry Cruz. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: a) \( 2^{m} \) b) \( a^{n} \) c) \( \frac{1}{(a+b)^{4}} \) d) \( 1 \) e) \( 1 \) f) \( 12 \) g) \( \frac{3}{a^{2}} \) h) \( a^{6} \) i) \( ac \) j) \( \frac{c^{4}}{a^{4}} \) k) \( 0.0003 \) 1) \( ab^{ab} \) These are the simplified forms of the given expressions.

Solución

Simplify the expression by following steps: - step0: Solution: \(a^{-m}\times a^{n}\times a^{m}\) - step1: Multiply the terms: \(a^{-m+n+m}\) - step2: Add the terms: \(a^{n}\) Calculate or simplify the expression \( (x+y) \times (x+y)^{-1} \). Simplify the expression by following steps: - step0: Solution: \(\left(x+y\right)\left(x+y\right)^{-1}\) - step1: Express with a positive exponent: \(\left(x+y\right)\times \frac{1}{x+y}\) - step2: Reduce the fraction: \(1\times 1\) - step3: Multiply the terms: \(1\) Calculate or simplify the expression \( a\left(b^{a}\right)^{b} \). Simplify the expression by following steps: - step0: Solution: \(a\left(b^{a}\right)^{b}\) - step1: Multiply the exponents: \(ab^{ab}\) Calculate or simplify the expression \( \left(a^{-2}\right)^{-3} \). Simplify the expression by following steps: - step0: Solution: \(\left(a^{-2}\right)^{-3}\) - step1: Multiply the exponents: \(a^{-2\left(-3\right)}\) - step2: Multiply the numbers: \(a^{6}\) Calculate or simplify the expression \( \frac{12^{0}}{12^{0}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{12^{0}}{12^{0}}\) - step1: Evaluate the power: \(\frac{1}{12^{0}}\) - step2: Evaluate the power: \(\frac{1}{1}\) - step3: Divide the terms: \(1\) Calculate or simplify the expression \( \frac{12}{12^{0}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{12}{12^{0}}\) - step1: Evaluate the power: \(\frac{12}{1}\) - step2: Divide the terms: \(12\) Calculate or simplify the expression \( \left(a^{2}\right)^{-1} \times 3 \). Simplify the expression by following steps: - step0: Solution: \(\left(a^{2}\right)^{-1}\times 3\) - step1: Multiply the exponents: \(a^{2\left(-1\right)}\times 3\) - step2: Simplify: \(a^{-2}\times 3\) - step3: Reorder the terms: \(3a^{-2}\) - step4: Simplify: \(\frac{3}{a^{2}}\) Calculate or simplify the expression \( 2^{m} \times 2^{n} \times 2^{-n} \). Simplify the expression by following steps: - step0: Solution: \(2^{m}\times 2^{n}\times 2^{-n}\) - step1: Multiply the terms: \(2^{m+n-n}\) - step2: Calculate: \(2^{m}\) Calculate or simplify the expression \( (a+b)^{-1} \times (a+b)^{-3} \). Simplify the expression by following steps: - step0: Solution: \(\left(a+b\right)^{-1}\left(a+b\right)^{-3}\) - step1: Multiply the terms: \(\left(a+b\right)^{-4}\) - step2: Express with a positive exponent: \(\frac{1}{\left(a+b\right)^{4}}\) - step3: Expand the expression: \(\frac{1}{a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}}\) Calculate or simplify the expression \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{a}{c}\right)^{-2}\left(\frac{c}{a}\right)^{2}\) - step1: Evaluate the power: \(\frac{c^{2}}{a^{2}}\times \left(\frac{c}{a}\right)^{2}\) - step2: Rewrite the expression: \(\frac{c^{2}}{a^{2}}\times \frac{c^{2}}{a^{2}}\) - step3: Multiply the terms: \(\frac{c^{2}\times c^{2}}{a^{2}\times a^{2}}\) - step4: Multiply the terms: \(\frac{c^{4}}{a^{2}\times a^{2}}\) - step5: Multiply the terms: \(\frac{c^{4}}{a^{4}}\) Calculate or simplify the expression \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \). Simplify the expression by following steps: - step0: Solution: \(\frac{a^{2}}{c}\times \frac{c^{2}}{a}\) - step1: Reduce the fraction: \(ac\) Calculate or simplify the expression \( 3\left(10^{2}\right)^{-2} \). Calculate the value by following steps: - step0: Calculate: \(3\left(10^{2}\right)^{-2}\) - step1: Multiply the exponents: \(3\times 10^{2\left(-2\right)}\) - step2: Multiply the numbers: \(3\times 10^{-4}\) - step3: Evaluate the power: \(3\times \frac{1}{10000}\) - step4: Multiply: \(\frac{3}{10000}\) Here are the simplified results for each expression: a) \( 2^{m} \times 2^{n} \times 2^{-n} \) - **Step**: Combine the exponents. - **Result**: \( 2^{m} \) --- b) \( a^{-m} \times a^{n} \times a^{m} \) - **Step**: Combine the exponents. - **Result**: \( a^{n} \) --- c) \( (a+b)^{-1} \times (a+b)^{-3} \) - **Step**: Combine the exponents. - **Result**: \( (a+b)^{-4} = \frac{1}{(a+b)^{4}} \) --- d) \( (x+y) \times (x+y)^{-1} \) - **Step**: This is the product of a term and its reciprocal. - **Result**: \( 1 \) --- e) \( \frac{12^{0}}{12^{0}} \) - **Step**: Any non-zero number raised to the power of 0 is 1. - **Result**: \( 1 \) --- f) \( \frac{12}{12^{0}} \) - **Step**: Simplify using \( 12^{0} = 1 \). - **Result**: \( 12 \) --- g) \( \left(a^{2}\right)^{-1} \times 3 \) - **Step**: Apply the negative exponent. - **Result**: \( \frac{3}{a^{2}} \) --- h) \( \left(a^{-2}\right)^{-3} \) - **Step**: Apply the negative exponent. - **Result**: \( a^{6} \) --- i) \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \) - **Step**: Multiply the fractions. - **Result**: \( \frac{ac^{2}}{a^{2}} = ac \) --- j) \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \) - **Step**: Apply the negative exponent and simplify. - **Result**: \( \frac{c^{4}}{a^{4}} \) --- k) \( 3\left(10^{2}\right)^{-2} \) - **Step**: Apply the negative exponent. - **Result**: \( \frac{3}{10000} \) or \( 0.0003 \) --- 1) \( a\left(b^{a}\right)^{b} \) - **Step**: Simplify the expression. - **Result**: \( ab^{ab} \) --- These results summarize the simplifications for each expression provided.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

If you're diving into the world of exponents and their rules, it's worth noting that the laws of exponents date back to ancient civilizations, where early mathematicians utilized similar principles in various mathematical writings. The modern notation and rules we use today were refined in the 16th century, coming largely from European mathematicians who aimed to standardize mathematical communication. When applying exponent rules in real-world scenarios, consider how they simplify calculations. For example, you can use exponent rules in finance when calculating compound interest, where the base represents your investment, and the exponent represents the number of compounding periods. Simplifying those calculations can lead to clearer insights into your growth potential over time!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad