Responder
Here are the simplified results for each expression:
a) \( 2^{m} \)
b) \( a^{n} \)
c) \( \frac{1}{(a+b)^{4}} \)
d) \( 1 \)
e) \( 1 \)
f) \( 12 \)
g) \( \frac{3}{a^{2}} \)
h) \( a^{6} \)
i) \( ac \)
j) \( \frac{c^{4}}{a^{4}} \)
k) \( 0.0003 \)
1) \( ab^{ab} \)
These are the simplified forms of the given expressions.
Solución
Simplify the expression by following steps:
- step0: Solution:
\(a^{-m}\times a^{n}\times a^{m}\)
- step1: Multiply the terms:
\(a^{-m+n+m}\)
- step2: Add the terms:
\(a^{n}\)
Calculate or simplify the expression \( (x+y) \times (x+y)^{-1} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x+y\right)\left(x+y\right)^{-1}\)
- step1: Express with a positive exponent:
\(\left(x+y\right)\times \frac{1}{x+y}\)
- step2: Reduce the fraction:
\(1\times 1\)
- step3: Multiply the terms:
\(1\)
Calculate or simplify the expression \( a\left(b^{a}\right)^{b} \).
Simplify the expression by following steps:
- step0: Solution:
\(a\left(b^{a}\right)^{b}\)
- step1: Multiply the exponents:
\(ab^{ab}\)
Calculate or simplify the expression \( \left(a^{-2}\right)^{-3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(a^{-2}\right)^{-3}\)
- step1: Multiply the exponents:
\(a^{-2\left(-3\right)}\)
- step2: Multiply the numbers:
\(a^{6}\)
Calculate or simplify the expression \( \frac{12^{0}}{12^{0}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{12^{0}}{12^{0}}\)
- step1: Evaluate the power:
\(\frac{1}{12^{0}}\)
- step2: Evaluate the power:
\(\frac{1}{1}\)
- step3: Divide the terms:
\(1\)
Calculate or simplify the expression \( \frac{12}{12^{0}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{12}{12^{0}}\)
- step1: Evaluate the power:
\(\frac{12}{1}\)
- step2: Divide the terms:
\(12\)
Calculate or simplify the expression \( \left(a^{2}\right)^{-1} \times 3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(a^{2}\right)^{-1}\times 3\)
- step1: Multiply the exponents:
\(a^{2\left(-1\right)}\times 3\)
- step2: Simplify:
\(a^{-2}\times 3\)
- step3: Reorder the terms:
\(3a^{-2}\)
- step4: Simplify:
\(\frac{3}{a^{2}}\)
Calculate or simplify the expression \( 2^{m} \times 2^{n} \times 2^{-n} \).
Simplify the expression by following steps:
- step0: Solution:
\(2^{m}\times 2^{n}\times 2^{-n}\)
- step1: Multiply the terms:
\(2^{m+n-n}\)
- step2: Calculate:
\(2^{m}\)
Calculate or simplify the expression \( (a+b)^{-1} \times (a+b)^{-3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(a+b\right)^{-1}\left(a+b\right)^{-3}\)
- step1: Multiply the terms:
\(\left(a+b\right)^{-4}\)
- step2: Express with a positive exponent:
\(\frac{1}{\left(a+b\right)^{4}}\)
- step3: Expand the expression:
\(\frac{1}{a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}}\)
Calculate or simplify the expression \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{a}{c}\right)^{-2}\left(\frac{c}{a}\right)^{2}\)
- step1: Evaluate the power:
\(\frac{c^{2}}{a^{2}}\times \left(\frac{c}{a}\right)^{2}\)
- step2: Rewrite the expression:
\(\frac{c^{2}}{a^{2}}\times \frac{c^{2}}{a^{2}}\)
- step3: Multiply the terms:
\(\frac{c^{2}\times c^{2}}{a^{2}\times a^{2}}\)
- step4: Multiply the terms:
\(\frac{c^{4}}{a^{2}\times a^{2}}\)
- step5: Multiply the terms:
\(\frac{c^{4}}{a^{4}}\)
Calculate or simplify the expression \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{a^{2}}{c}\times \frac{c^{2}}{a}\)
- step1: Reduce the fraction:
\(ac\)
Calculate or simplify the expression \( 3\left(10^{2}\right)^{-2} \).
Calculate the value by following steps:
- step0: Calculate:
\(3\left(10^{2}\right)^{-2}\)
- step1: Multiply the exponents:
\(3\times 10^{2\left(-2\right)}\)
- step2: Multiply the numbers:
\(3\times 10^{-4}\)
- step3: Evaluate the power:
\(3\times \frac{1}{10000}\)
- step4: Multiply:
\(\frac{3}{10000}\)
Here are the simplified results for each expression:
a) \( 2^{m} \times 2^{n} \times 2^{-n} \)
- **Step**: Combine the exponents.
- **Result**: \( 2^{m} \)
---
b) \( a^{-m} \times a^{n} \times a^{m} \)
- **Step**: Combine the exponents.
- **Result**: \( a^{n} \)
---
c) \( (a+b)^{-1} \times (a+b)^{-3} \)
- **Step**: Combine the exponents.
- **Result**: \( (a+b)^{-4} = \frac{1}{(a+b)^{4}} \)
---
d) \( (x+y) \times (x+y)^{-1} \)
- **Step**: This is the product of a term and its reciprocal.
- **Result**: \( 1 \)
---
e) \( \frac{12^{0}}{12^{0}} \)
- **Step**: Any non-zero number raised to the power of 0 is 1.
- **Result**: \( 1 \)
---
f) \( \frac{12}{12^{0}} \)
- **Step**: Simplify using \( 12^{0} = 1 \).
- **Result**: \( 12 \)
---
g) \( \left(a^{2}\right)^{-1} \times 3 \)
- **Step**: Apply the negative exponent.
- **Result**: \( \frac{3}{a^{2}} \)
---
h) \( \left(a^{-2}\right)^{-3} \)
- **Step**: Apply the negative exponent.
- **Result**: \( a^{6} \)
---
i) \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \)
- **Step**: Multiply the fractions.
- **Result**: \( \frac{ac^{2}}{a^{2}} = ac \)
---
j) \( \left(\frac{a}{c}\right)^{-2} \times \left(\frac{c}{a}\right)^{2} \)
- **Step**: Apply the negative exponent and simplify.
- **Result**: \( \frac{c^{4}}{a^{4}} \)
---
k) \( 3\left(10^{2}\right)^{-2} \)
- **Step**: Apply the negative exponent.
- **Result**: \( \frac{3}{10000} \) or \( 0.0003 \)
---
1) \( a\left(b^{a}\right)^{b} \)
- **Step**: Simplify the expression.
- **Result**: \( ab^{ab} \)
---
These results summarize the simplifications for each expression provided.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución