Answer
a) \( \frac{b}{a} \)
b) \( \frac{9}{x^{2}+6x+9} \)
c) \( 6x^{2} \)
d) \( \frac{x+3}{3x^{3}} \)
e) \( 1 \)
f) \( \frac{a^{2}-2a+1}{a^{2}} \)
g) \( \frac{1}{x-2} \)
h) \( a^{2}-4 \)
Solution
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{x^{2}+x-6}{3x^{2}-12x}\div \frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}\)
- step1: Divide the terms:
\(\frac{\left(x+3\right)\left(x+4\right)}{3x^{3}}\times \frac{1}{x+4}\)
- step2: Reduce the fraction:
\(\frac{x+3}{3x^{3}}\times 1\)
- step3: Multiply the terms:
\(\frac{x+3}{3x^{3}}\)
Expand the expression \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \)
Simplify the expression by following steps:
- step0: Expand the expression:
\(\frac{-2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\)
- step1: Rewrite the fraction:
\(-\frac{2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\)
- step2: Reduce the fraction:
\(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{1-a}\)
- step3: Rewrite the expression:
\(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{-a+1}\)
- step4: Calculate:
\(\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{a-1}\)
- step5: Calculate:
\(\frac{a^{3}-a^{2}-4a+4}{a-1}\)
- step6: Calculate:
\(\frac{\left(a^{2}-4\right)\left(a-1\right)}{a-1}\)
- step7: Reduce the fraction:
\(a^{2}-4\)
Expand the expression \( \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \)
Simplify the expression by following steps:
- step0: Calculate:
\(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a^{2}+a}{a^{2}-a}\)
- step1: Divide the terms:
\(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a+1}{a-1}\)
- step2: Multiply the terms:
\(\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\)
- step3: Rewrite the expression:
\(\frac{\left(a-1\right)^{2}\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\)
- step4: Reduce the fraction:
\(\frac{\left(a-1\right)\left(a-1\right)}{a^{2}}\times 1\)
- step5: Multiply the terms:
\(\frac{\left(a-1\right)^{2}}{a^{2}}\)
- step6: Calculate:
\(\frac{a^{2}-2a+1}{a^{2}}\)
Expand the expression \( \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy^{2}-y}{xy}\)
- step1: Divide the terms:
\(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy-1}{x}\)
- step2: Divide the terms:
\(\frac{x}{\left(xy-1\right)\left(x-2\right)}\times \frac{xy-1}{x}\)
- step3: Reduce the fraction:
\(\frac{1}{x-2}\times 1\)
- step4: Multiply the terms:
\(\frac{1}{x-2}\)
Expand the expression \( \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{a^{2}b-ab}{a^{3}+a^{2}}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\)
- step1: Divide the terms:
\(\frac{ab-b}{a^{2}+a}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\)
- step2: Divide the terms:
\(\frac{ab-b}{a^{2}+a}\div \frac{ab-b}{a^{2}+a}\)
- step3: Multiply by the reciprocal:
\(\frac{ab-b}{a^{2}+a}\times \frac{a^{2}+a}{ab-b}\)
- step4: Reduce the fraction:
\(1\times 1\)
- step5: Multiply the terms:
\(1\)
Expand the expression \( \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \)
Simplify the expression by following steps:
- step0: Calculate:
\(\frac{3x^{2}+27}{2x+6}\times \frac{6x-18}{x^{4}-81}\)
- step1: Divide the terms:
\(\frac{3x^{2}+27}{2x+6}\times \frac{6}{x^{3}+9x+3x^{2}+27}\)
- step2: Rewrite the expression:
\(\frac{3\left(x^{2}+9\right)}{2x+6}\times \frac{6}{\left(x^{2}+9\right)\left(x+3\right)}\)
- step3: Reduce the fraction:
\(\frac{3}{2x+6}\times \frac{6}{x+3}\)
- step4: Rewrite the expression:
\(\frac{3}{2\left(x+3\right)}\times \frac{6}{x+3}\)
- step5: Reduce the fraction:
\(\frac{3}{x+3}\times \frac{3}{x+3}\)
- step6: Multiply the terms:
\(\frac{3\times 3}{\left(x+3\right)\left(x+3\right)}\)
- step7: Multiply the terms:
\(\frac{9}{\left(x+3\right)\left(x+3\right)}\)
- step8: Multiply the terms:
\(\frac{9}{\left(x+3\right)^{2}}\)
- step9: Calculate:
\(\frac{9}{x^{2}+6x+9}\)
Expand the expression \( \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{ab-a^{2}}{b^{2}-a^{2}}\div \frac{a^{2}}{b^{2}+ab}\)
- step1: Divide the terms:
\(\frac{a}{b+a}\div \frac{a^{2}}{b^{2}+ab}\)
- step2: Multiply by the reciprocal:
\(\frac{a}{b+a}\times \frac{b^{2}+ab}{a^{2}}\)
- step3: Reduce the fraction:
\(\frac{1}{b+a}\times \frac{b^{2}+ab}{a}\)
- step4: Rewrite the expression:
\(\frac{1}{b+a}\times \frac{b\left(b+a\right)}{a}\)
- step5: Reduce the fraction:
\(1\times \frac{b}{a}\)
- step6: Multiply the terms:
\(\frac{b}{a}\)
Expand the expression \( \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{2x^{2}-6x}{x^{2}-1}\div \frac{x-3}{x^{2}-x}\div \frac{1}{3x+3}\)
- step1: Divide the terms:
\(\frac{2x^{2}}{x+1}\div \frac{1}{3x+3}\)
- step2: Multiply by the reciprocal:
\(\frac{2x^{2}}{x+1}\times \left(3x+3\right)\)
- step3: Rewrite the expression:
\(\frac{2x^{2}}{x+1}\times 3\left(x+1\right)\)
- step4: Reduce the fraction:
\(2x^{2}\times 3\)
- step5: Multiply the terms:
\(6x^{2}\)
Let's simplify each expression step by step:
### a)
\[
\frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b}
\]
1. Rewrite the division as multiplication by the reciprocal:
\[
\frac{a b-a^{2}}{b^{2}-a^{2}} \times \frac{b^{2}+a b}{a^{2}}
\]
2. Factor the numerator and denominator:
\[
\frac{a(b-a)}{(b-a)(b+a)} \times \frac{b(b+a)}{a^{2}}
\]
3. Cancel common factors:
\[
\frac{b}{a}
\]
### b)
\[
\frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81}
\]
1. Factor each part:
\[
\frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x^{2}-9)(x^{2}+9)}
\]
2. Recognize that \(x^{2}-9\) can be factored as \((x-3)(x+3)\):
\[
\frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x-3)(x+3)(x^{2}+9)}
\]
3. Cancel common factors:
\[
\frac{9}{x^{2}+6x+9}
\]
### c)
\[
\frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3}
\]
1. Rewrite the division as multiplication by the reciprocal:
\[
\frac{2x(x-3)}{(x-1)(x+1)} \times \frac{x^{2}-x}{x-3} \times \frac{1}{3(x+1)}
\]
2. Cancel common factors:
\[
6x^{2}
\]
### d)
\[
\frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{x^{3}-2 x^{2}}{x^{2}-16} \times \frac{1}{x+4}
\]
1. Factor each part:
\[
\frac{(x-2)(x+3)}{3x(x-4)} \div \frac{x^{2}(x-2)}{(x-4)(x+4)} \times \frac{1}{x+4}
\]
2. Rewrite the division as multiplication by the reciprocal:
\[
\frac{(x-2)(x+3)}{3x(x-4)} \times \frac{(x-4)(x+4)}{x^{2}(x-2)} \times \frac{1}{x+4}
\]
3. Cancel common factors:
\[
\frac{x+3}{3x^{3}}
\]
### e)
\[
\frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a}
\]
1. Factor each part:
\[
\frac{ab(a-b)}{a^{2}(a+1)} \div \frac{b(a(b-2))}{a(a^{2}-1)}
\]
2. Rewrite the division as multiplication by the reciprocal:
\[
\frac{ab(a-b)}{a^{2}(a+1)} \times \frac{a(a^{2}-1)}{b(a(b-2))}
\]
3. Cancel common factors:
\[
1
\]
### f)
\[
\frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a}
\]
1. Factor each part:
\[
\frac{(a-1)^{2}}{(a+1)^{2}} \times \frac{(a-1)(a+1)}{a^{2}} \times \frac{a(a+1)}{a(a-1)}
\]
2. Cancel common factors:
\[
\frac{a^{2}-2a+1}{a^{2}}
\]
### g)
\[
\frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y}
\]
1. Factor each part:
\[
\frac{x^{2}+2x+4}{(xy-1)(xy+1)} \div \frac{(x-2)(x^{2}+2x+4)}{x(y(x+1))} \times \frac{y(x-1)}{xy}
\]
2. Rewrite the division as multiplication by the reciprocal:
\[
\frac{x^{2}+2x+4}{(xy-1)(xy+1)} \times \frac{y(x(y+1))}{(x-2)(x^{2}+2x+4)}
\]
3. Cancel common factors:
\[
\frac{1}{x-2}
\]
### h)
\[
\frac{-2(a-1)(a+2)(a-2)}{2(1-a)}
\]
1. Factor out common terms:
\[
\frac{-2(a-1)(a+2)(a-2)}{-2(a-1)}
\]
2. Cancel common factors:
\[
a^{2}-4
\]
### Summary of Results:
- a) \( \frac{b}{a} \)
- b) \( \frac{9}{x^{2}+6x+9} \)
- c) \( 6x^{2} \)
- d) \( \frac{x+3}{3x^{3}} \)
- e) \( 1 \)
- f) \( \frac{a^{2}-2a+1}{a^{2}} \)
- g) \( \frac{1}{x-2} \)
- h) \( a^{2}-4 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution