Question
upstudy study bank question image url

3. Simplify. a) \( \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \) b) \( \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \) c) \( \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \) d) \( \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{x^{3}-2 x^{2}}{x^{2}-16} \times \frac{1}{x+4} \) e) \( \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \) f) \( \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \) g) \( \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \) h) \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \)

Ask by Chavez Burns. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( \frac{b}{a} \) b) \( \frac{9}{x^{2}+6x+9} \) c) \( 6x^{2} \) d) \( \frac{x+3}{3x^{3}} \) e) \( 1 \) f) \( \frac{a^{2}-2a+1}{a^{2}} \) g) \( \frac{1}{x-2} \) h) \( a^{2}-4 \)

Solution

Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{2}+x-6}{3x^{2}-12x}\div \frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}\) - step1: Divide the terms: \(\frac{\left(x+3\right)\left(x+4\right)}{3x^{3}}\times \frac{1}{x+4}\) - step2: Reduce the fraction: \(\frac{x+3}{3x^{3}}\times 1\) - step3: Multiply the terms: \(\frac{x+3}{3x^{3}}\) Expand the expression \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \) Simplify the expression by following steps: - step0: Expand the expression: \(\frac{-2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\) - step1: Rewrite the fraction: \(-\frac{2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\) - step2: Reduce the fraction: \(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{1-a}\) - step3: Rewrite the expression: \(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{-a+1}\) - step4: Calculate: \(\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{a-1}\) - step5: Calculate: \(\frac{a^{3}-a^{2}-4a+4}{a-1}\) - step6: Calculate: \(\frac{\left(a^{2}-4\right)\left(a-1\right)}{a-1}\) - step7: Reduce the fraction: \(a^{2}-4\) Expand the expression \( \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \) Simplify the expression by following steps: - step0: Calculate: \(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a^{2}+a}{a^{2}-a}\) - step1: Divide the terms: \(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a+1}{a-1}\) - step2: Multiply the terms: \(\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\) - step3: Rewrite the expression: \(\frac{\left(a-1\right)^{2}\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\) - step4: Reduce the fraction: \(\frac{\left(a-1\right)\left(a-1\right)}{a^{2}}\times 1\) - step5: Multiply the terms: \(\frac{\left(a-1\right)^{2}}{a^{2}}\) - step6: Calculate: \(\frac{a^{2}-2a+1}{a^{2}}\) Expand the expression \( \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy^{2}-y}{xy}\) - step1: Divide the terms: \(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy-1}{x}\) - step2: Divide the terms: \(\frac{x}{\left(xy-1\right)\left(x-2\right)}\times \frac{xy-1}{x}\) - step3: Reduce the fraction: \(\frac{1}{x-2}\times 1\) - step4: Multiply the terms: \(\frac{1}{x-2}\) Expand the expression \( \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{a^{2}b-ab}{a^{3}+a^{2}}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\) - step1: Divide the terms: \(\frac{ab-b}{a^{2}+a}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\) - step2: Divide the terms: \(\frac{ab-b}{a^{2}+a}\div \frac{ab-b}{a^{2}+a}\) - step3: Multiply by the reciprocal: \(\frac{ab-b}{a^{2}+a}\times \frac{a^{2}+a}{ab-b}\) - step4: Reduce the fraction: \(1\times 1\) - step5: Multiply the terms: \(1\) Expand the expression \( \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \) Simplify the expression by following steps: - step0: Calculate: \(\frac{3x^{2}+27}{2x+6}\times \frac{6x-18}{x^{4}-81}\) - step1: Divide the terms: \(\frac{3x^{2}+27}{2x+6}\times \frac{6}{x^{3}+9x+3x^{2}+27}\) - step2: Rewrite the expression: \(\frac{3\left(x^{2}+9\right)}{2x+6}\times \frac{6}{\left(x^{2}+9\right)\left(x+3\right)}\) - step3: Reduce the fraction: \(\frac{3}{2x+6}\times \frac{6}{x+3}\) - step4: Rewrite the expression: \(\frac{3}{2\left(x+3\right)}\times \frac{6}{x+3}\) - step5: Reduce the fraction: \(\frac{3}{x+3}\times \frac{3}{x+3}\) - step6: Multiply the terms: \(\frac{3\times 3}{\left(x+3\right)\left(x+3\right)}\) - step7: Multiply the terms: \(\frac{9}{\left(x+3\right)\left(x+3\right)}\) - step8: Multiply the terms: \(\frac{9}{\left(x+3\right)^{2}}\) - step9: Calculate: \(\frac{9}{x^{2}+6x+9}\) Expand the expression \( \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{ab-a^{2}}{b^{2}-a^{2}}\div \frac{a^{2}}{b^{2}+ab}\) - step1: Divide the terms: \(\frac{a}{b+a}\div \frac{a^{2}}{b^{2}+ab}\) - step2: Multiply by the reciprocal: \(\frac{a}{b+a}\times \frac{b^{2}+ab}{a^{2}}\) - step3: Reduce the fraction: \(\frac{1}{b+a}\times \frac{b^{2}+ab}{a}\) - step4: Rewrite the expression: \(\frac{1}{b+a}\times \frac{b\left(b+a\right)}{a}\) - step5: Reduce the fraction: \(1\times \frac{b}{a}\) - step6: Multiply the terms: \(\frac{b}{a}\) Expand the expression \( \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{2x^{2}-6x}{x^{2}-1}\div \frac{x-3}{x^{2}-x}\div \frac{1}{3x+3}\) - step1: Divide the terms: \(\frac{2x^{2}}{x+1}\div \frac{1}{3x+3}\) - step2: Multiply by the reciprocal: \(\frac{2x^{2}}{x+1}\times \left(3x+3\right)\) - step3: Rewrite the expression: \(\frac{2x^{2}}{x+1}\times 3\left(x+1\right)\) - step4: Reduce the fraction: \(2x^{2}\times 3\) - step5: Multiply the terms: \(6x^{2}\) Let's simplify each expression step by step: ### a) \[ \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \] 1. Rewrite the division as multiplication by the reciprocal: \[ \frac{a b-a^{2}}{b^{2}-a^{2}} \times \frac{b^{2}+a b}{a^{2}} \] 2. Factor the numerator and denominator: \[ \frac{a(b-a)}{(b-a)(b+a)} \times \frac{b(b+a)}{a^{2}} \] 3. Cancel common factors: \[ \frac{b}{a} \] ### b) \[ \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \] 1. Factor each part: \[ \frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x^{2}-9)(x^{2}+9)} \] 2. Recognize that \(x^{2}-9\) can be factored as \((x-3)(x+3)\): \[ \frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x-3)(x+3)(x^{2}+9)} \] 3. Cancel common factors: \[ \frac{9}{x^{2}+6x+9} \] ### c) \[ \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \] 1. Rewrite the division as multiplication by the reciprocal: \[ \frac{2x(x-3)}{(x-1)(x+1)} \times \frac{x^{2}-x}{x-3} \times \frac{1}{3(x+1)} \] 2. Cancel common factors: \[ 6x^{2} \] ### d) \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{x^{3}-2 x^{2}}{x^{2}-16} \times \frac{1}{x+4} \] 1. Factor each part: \[ \frac{(x-2)(x+3)}{3x(x-4)} \div \frac{x^{2}(x-2)}{(x-4)(x+4)} \times \frac{1}{x+4} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{(x-2)(x+3)}{3x(x-4)} \times \frac{(x-4)(x+4)}{x^{2}(x-2)} \times \frac{1}{x+4} \] 3. Cancel common factors: \[ \frac{x+3}{3x^{3}} \] ### e) \[ \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \] 1. Factor each part: \[ \frac{ab(a-b)}{a^{2}(a+1)} \div \frac{b(a(b-2))}{a(a^{2}-1)} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{ab(a-b)}{a^{2}(a+1)} \times \frac{a(a^{2}-1)}{b(a(b-2))} \] 3. Cancel common factors: \[ 1 \] ### f) \[ \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \] 1. Factor each part: \[ \frac{(a-1)^{2}}{(a+1)^{2}} \times \frac{(a-1)(a+1)}{a^{2}} \times \frac{a(a+1)}{a(a-1)} \] 2. Cancel common factors: \[ \frac{a^{2}-2a+1}{a^{2}} \] ### g) \[ \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \] 1. Factor each part: \[ \frac{x^{2}+2x+4}{(xy-1)(xy+1)} \div \frac{(x-2)(x^{2}+2x+4)}{x(y(x+1))} \times \frac{y(x-1)}{xy} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}+2x+4}{(xy-1)(xy+1)} \times \frac{y(x(y+1))}{(x-2)(x^{2}+2x+4)} \] 3. Cancel common factors: \[ \frac{1}{x-2} \] ### h) \[ \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \] 1. Factor out common terms: \[ \frac{-2(a-1)(a+2)(a-2)}{-2(a-1)} \] 2. Cancel common factors: \[ a^{2}-4 \] ### Summary of Results: - a) \( \frac{b}{a} \) - b) \( \frac{9}{x^{2}+6x+9} \) - c) \( 6x^{2} \) - d) \( \frac{x+3}{3x^{3}} \) - e) \( 1 \) - f) \( \frac{a^{2}-2a+1}{a^{2}} \) - g) \( \frac{1}{x-2} \) - h) \( a^{2}-4 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s step back in time to the days of ancient mathematics! The Greeks were the pioneers in algebraic expressions, laying down the very foundation for simplifying fractions and equations that we still use today. Euclid and Diophantus made huge strides in geometry and number theory, which are essential for simplifying complex expressions. Their influence is evident even in modern mathematics, reminding us that sometimes, a little historical perspective can help us appreciate the basics! Now, let's zoom into the real world — did you know that simplifying expressions can be incredibly handy in everyday situations? From calculating discounts while shopping to optimizing recipes in cooking, having a clear and simplified mathematical approach can save you both time and effort. The ability to quickly manipulate numbers and variables ensures you make quick decisions, whether you're budgeting or solving practical problems. So, next time you simplify an expression, think about how that skill might come in useful in your daily life!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy