Pregunta
upstudy study bank question image url

3. Simplify. a) \( \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \) b) \( \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \) c) \( \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \) d) \( \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{x^{3}-2 x^{2}}{x^{2}-16} \times \frac{1}{x+4} \) e) \( \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \) f) \( \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \) g) \( \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \) h) \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \)

Ask by Chavez Burns. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) \( \frac{b}{a} \) b) \( \frac{9}{x^{2}+6x+9} \) c) \( 6x^{2} \) d) \( \frac{x+3}{3x^{3}} \) e) \( 1 \) f) \( \frac{a^{2}-2a+1}{a^{2}} \) g) \( \frac{1}{x-2} \) h) \( a^{2}-4 \)

Solución

Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{2}+x-6}{3x^{2}-12x}\div \frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}\) - step1: Divide the terms: \(\frac{\left(x+3\right)\left(x+4\right)}{3x^{3}}\times \frac{1}{x+4}\) - step2: Reduce the fraction: \(\frac{x+3}{3x^{3}}\times 1\) - step3: Multiply the terms: \(\frac{x+3}{3x^{3}}\) Expand the expression \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \) Simplify the expression by following steps: - step0: Expand the expression: \(\frac{-2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\) - step1: Rewrite the fraction: \(-\frac{2\left(a-1\right)\left(a+2\right)\left(a-2\right)}{2\left(1-a\right)}\) - step2: Reduce the fraction: \(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{1-a}\) - step3: Rewrite the expression: \(-\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{-a+1}\) - step4: Calculate: \(\frac{\left(a-1\right)\left(a+2\right)\left(a-2\right)}{a-1}\) - step5: Calculate: \(\frac{a^{3}-a^{2}-4a+4}{a-1}\) - step6: Calculate: \(\frac{\left(a^{2}-4\right)\left(a-1\right)}{a-1}\) - step7: Reduce the fraction: \(a^{2}-4\) Expand the expression \( \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \) Simplify the expression by following steps: - step0: Calculate: \(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a^{2}+a}{a^{2}-a}\) - step1: Divide the terms: \(\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \frac{a^{2}-1}{a^{2}}\times \frac{a+1}{a-1}\) - step2: Multiply the terms: \(\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\) - step3: Rewrite the expression: \(\frac{\left(a-1\right)^{2}\left(a-1\right)}{a^{2}\left(a+1\right)}\times \frac{a+1}{a-1}\) - step4: Reduce the fraction: \(\frac{\left(a-1\right)\left(a-1\right)}{a^{2}}\times 1\) - step5: Multiply the terms: \(\frac{\left(a-1\right)^{2}}{a^{2}}\) - step6: Calculate: \(\frac{a^{2}-2a+1}{a^{2}}\) Expand the expression \( \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy^{2}-y}{xy}\) - step1: Divide the terms: \(\frac{x^{2}+2x+4}{x^{2}y^{2}-1}\div \frac{x^{3}-8}{x^{2}y+x}\times \frac{xy-1}{x}\) - step2: Divide the terms: \(\frac{x}{\left(xy-1\right)\left(x-2\right)}\times \frac{xy-1}{x}\) - step3: Reduce the fraction: \(\frac{1}{x-2}\times 1\) - step4: Multiply the terms: \(\frac{1}{x-2}\) Expand the expression \( \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{a^{2}b-ab}{a^{3}+a^{2}}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\) - step1: Divide the terms: \(\frac{ab-b}{a^{2}+a}\div \frac{a^{2}b-2ab+b}{a^{3}-a}\) - step2: Divide the terms: \(\frac{ab-b}{a^{2}+a}\div \frac{ab-b}{a^{2}+a}\) - step3: Multiply by the reciprocal: \(\frac{ab-b}{a^{2}+a}\times \frac{a^{2}+a}{ab-b}\) - step4: Reduce the fraction: \(1\times 1\) - step5: Multiply the terms: \(1\) Expand the expression \( \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \) Simplify the expression by following steps: - step0: Calculate: \(\frac{3x^{2}+27}{2x+6}\times \frac{6x-18}{x^{4}-81}\) - step1: Divide the terms: \(\frac{3x^{2}+27}{2x+6}\times \frac{6}{x^{3}+9x+3x^{2}+27}\) - step2: Rewrite the expression: \(\frac{3\left(x^{2}+9\right)}{2x+6}\times \frac{6}{\left(x^{2}+9\right)\left(x+3\right)}\) - step3: Reduce the fraction: \(\frac{3}{2x+6}\times \frac{6}{x+3}\) - step4: Rewrite the expression: \(\frac{3}{2\left(x+3\right)}\times \frac{6}{x+3}\) - step5: Reduce the fraction: \(\frac{3}{x+3}\times \frac{3}{x+3}\) - step6: Multiply the terms: \(\frac{3\times 3}{\left(x+3\right)\left(x+3\right)}\) - step7: Multiply the terms: \(\frac{9}{\left(x+3\right)\left(x+3\right)}\) - step8: Multiply the terms: \(\frac{9}{\left(x+3\right)^{2}}\) - step9: Calculate: \(\frac{9}{x^{2}+6x+9}\) Expand the expression \( \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{ab-a^{2}}{b^{2}-a^{2}}\div \frac{a^{2}}{b^{2}+ab}\) - step1: Divide the terms: \(\frac{a}{b+a}\div \frac{a^{2}}{b^{2}+ab}\) - step2: Multiply by the reciprocal: \(\frac{a}{b+a}\times \frac{b^{2}+ab}{a^{2}}\) - step3: Reduce the fraction: \(\frac{1}{b+a}\times \frac{b^{2}+ab}{a}\) - step4: Rewrite the expression: \(\frac{1}{b+a}\times \frac{b\left(b+a\right)}{a}\) - step5: Reduce the fraction: \(1\times \frac{b}{a}\) - step6: Multiply the terms: \(\frac{b}{a}\) Expand the expression \( \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{2x^{2}-6x}{x^{2}-1}\div \frac{x-3}{x^{2}-x}\div \frac{1}{3x+3}\) - step1: Divide the terms: \(\frac{2x^{2}}{x+1}\div \frac{1}{3x+3}\) - step2: Multiply by the reciprocal: \(\frac{2x^{2}}{x+1}\times \left(3x+3\right)\) - step3: Rewrite the expression: \(\frac{2x^{2}}{x+1}\times 3\left(x+1\right)\) - step4: Reduce the fraction: \(2x^{2}\times 3\) - step5: Multiply the terms: \(6x^{2}\) Let's simplify each expression step by step: ### a) \[ \frac{a b-a^{2}}{b^{2}-a^{2}} \div \frac{a^{2}}{b^{2}+a b} \] 1. Rewrite the division as multiplication by the reciprocal: \[ \frac{a b-a^{2}}{b^{2}-a^{2}} \times \frac{b^{2}+a b}{a^{2}} \] 2. Factor the numerator and denominator: \[ \frac{a(b-a)}{(b-a)(b+a)} \times \frac{b(b+a)}{a^{2}} \] 3. Cancel common factors: \[ \frac{b}{a} \] ### b) \[ \frac{3 x^{2}+27}{2 x+6} \times \frac{6 x-18}{x^{4}-81} \] 1. Factor each part: \[ \frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x^{2}-9)(x^{2}+9)} \] 2. Recognize that \(x^{2}-9\) can be factored as \((x-3)(x+3)\): \[ \frac{3(x^{2}+9)}{2(x+3)} \times \frac{6(x-3)}{(x-3)(x+3)(x^{2}+9)} \] 3. Cancel common factors: \[ \frac{9}{x^{2}+6x+9} \] ### c) \[ \frac{2 x^{2}-6 x}{x^{2}-1} \div \frac{x-3}{x^{2}-x} \div \frac{1}{3 x+3} \] 1. Rewrite the division as multiplication by the reciprocal: \[ \frac{2x(x-3)}{(x-1)(x+1)} \times \frac{x^{2}-x}{x-3} \times \frac{1}{3(x+1)} \] 2. Cancel common factors: \[ 6x^{2} \] ### d) \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{x^{3}-2 x^{2}}{x^{2}-16} \times \frac{1}{x+4} \] 1. Factor each part: \[ \frac{(x-2)(x+3)}{3x(x-4)} \div \frac{x^{2}(x-2)}{(x-4)(x+4)} \times \frac{1}{x+4} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{(x-2)(x+3)}{3x(x-4)} \times \frac{(x-4)(x+4)}{x^{2}(x-2)} \times \frac{1}{x+4} \] 3. Cancel common factors: \[ \frac{x+3}{3x^{3}} \] ### e) \[ \frac{a^{2} b-a b}{a^{3}+a^{2}} \div \frac{a^{2} b-2 a b+b}{a^{3}-a} \] 1. Factor each part: \[ \frac{ab(a-b)}{a^{2}(a+1)} \div \frac{b(a(b-2))}{a(a^{2}-1)} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{ab(a-b)}{a^{2}(a+1)} \times \frac{a(a^{2}-1)}{b(a(b-2))} \] 3. Cancel common factors: \[ 1 \] ### f) \[ \frac{a^{2}-2 a+1}{a^{2}+2 a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a} \] 1. Factor each part: \[ \frac{(a-1)^{2}}{(a+1)^{2}} \times \frac{(a-1)(a+1)}{a^{2}} \times \frac{a(a+1)}{a(a-1)} \] 2. Cancel common factors: \[ \frac{a^{2}-2a+1}{a^{2}} \] ### g) \[ \frac{x^{2}+2 x+4}{x^{2} y^{2}-1} \div \frac{x^{3}-8}{x^{2} y+x} \times \frac{x y^{2}-y}{x y} \] 1. Factor each part: \[ \frac{x^{2}+2x+4}{(xy-1)(xy+1)} \div \frac{(x-2)(x^{2}+2x+4)}{x(y(x+1))} \times \frac{y(x-1)}{xy} \] 2. Rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}+2x+4}{(xy-1)(xy+1)} \times \frac{y(x(y+1))}{(x-2)(x^{2}+2x+4)} \] 3. Cancel common factors: \[ \frac{1}{x-2} \] ### h) \[ \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \] 1. Factor out common terms: \[ \frac{-2(a-1)(a+2)(a-2)}{-2(a-1)} \] 2. Cancel common factors: \[ a^{2}-4 \] ### Summary of Results: - a) \( \frac{b}{a} \) - b) \( \frac{9}{x^{2}+6x+9} \) - c) \( 6x^{2} \) - d) \( \frac{x+3}{3x^{3}} \) - e) \( 1 \) - f) \( \frac{a^{2}-2a+1}{a^{2}} \) - g) \( \frac{1}{x-2} \) - h) \( a^{2}-4 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s step back in time to the days of ancient mathematics! The Greeks were the pioneers in algebraic expressions, laying down the very foundation for simplifying fractions and equations that we still use today. Euclid and Diophantus made huge strides in geometry and number theory, which are essential for simplifying complex expressions. Their influence is evident even in modern mathematics, reminding us that sometimes, a little historical perspective can help us appreciate the basics! Now, let's zoom into the real world — did you know that simplifying expressions can be incredibly handy in everyday situations? From calculating discounts while shopping to optimizing recipes in cooking, having a clear and simplified mathematical approach can save you both time and effort. The ability to quickly manipulate numbers and variables ensures you make quick decisions, whether you're budgeting or solving practical problems. So, next time you simplify an expression, think about how that skill might come in useful in your daily life!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad