Question
upstudy study bank question image url

Decompose \( \frac{x^{3}-3 x+1}{x^{2}-x-2} \) inds its perthal frections

Ask by Clarke Beck. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The partial fraction decomposition of \( \frac{x^{3}-3x+1}{x^{2}-x-2} \) is: \[ x + 1 + \frac{1}{x - 2} - \frac{1}{x + 1} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

To decompose the expression \( \frac{x^{3}-3x+1}{x^{2}-x-2} \) into partial fractions, we first factor the denominator. The quadratic \( x^{2}-x-2 \) factors into \( (x-2)(x+1) \). Now we can express the original fraction as: \[ \frac{x^{3}-3x+1}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1} \] where \( A \) and \( B \) are constants to be determined. Multiplying both sides by the denominator \( (x-2)(x+1) \), we have: \[ x^{3}-3x+1 = A(x+1) + B(x-2) \] Expanding the right side gives: \[ x^{3}-3x+1 = Ax + A + Bx - 2B = (A+B)x + (A-2B) \] Next, we equate the coefficients from both sides: 1. From the \( x^{3} \) term: There is no \( x^{3} \) term on the right, so we set the coefficient to 0. 2. From the \( x^{1} \) term: \( A + B = 0 \) 3. From the constant term: \( A - 2B = 1 \) Now, we can solve the system of equations: From \( A + B = 0 \), we get \( B = -A \). Substituting \( B = -A \) into \( A - 2B = 1 \) gives: \[ A - 2(-A) = 1 \implies A + 2A = 1 \implies 3A = 1 \implies A = \frac{1}{3} \] Thus, \( B = -\frac{1}{3} \). Now, substituting back into the partial fraction form: \[ \frac{x^{3}-3x+1}{(x-2)(x+1)} = \frac{1/3}{x-2} - \frac{1/3}{x+1} \] So, the partial fraction decomposition is: \[ \frac{x^{3}-3x+1}{x^{2}-x-2} = \frac{1/3}{x-2} - \frac{1/3}{x+1} \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy