Question
Use a calculator to solve: \( \begin{array}{l}\text { 17) } \\ \int_{0}^{12} \sqrt{3 x^{2}+2 x} \\ \text { 18) } \int_{0}^{2}(3+x) \sqrt{x}\end{array} \)
Ask by Ray Matthews. in the United States
Feb 24,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The integrals evaluate to \( \frac{28\sqrt{2}}{5} \) for both expressions.
Solution
Calculate or simplify the expression \( \int_{0}^{2}(3+x)\sqrt{x} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int_{0}^{2} \left(3+x\right)\sqrt{x} dx\)
- step1: Distribute \(\sqrt{x}:\)
\(\int_{0}^{2} \left(3\sqrt{x}+x\sqrt{x}\right) dx\)
- step2: Simplify:
\(\int_{0}^{2} \left(3x^{\frac{1}{2}}+x^{\frac{3}{2}}\right) dx\)
- step3: Evaluate the integral:
\(\int \left(3x^{\frac{1}{2}}+x^{\frac{3}{2}}\right) dx\)
- step4: Use properties of integrals:
\(\int 3x^{\frac{1}{2}} dx+\int x^{\frac{3}{2}} dx\)
- step5: Evaluate the integral:
\(2x^{\frac{3}{2}}+\int x^{\frac{3}{2}} dx\)
- step6: Evaluate the integral:
\(2x^{\frac{3}{2}}+\frac{2}{5}x^{\frac{5}{2}}\)
- step7: Return the limits:
\(\left(2x^{\frac{3}{2}}+\frac{2}{5}x^{\frac{5}{2}}\right)\bigg |_{0}^{2}\)
- step8: Calculate the value:
\(\frac{7\times 2^{\frac{5}{2}}}{5}\)
- step9: Transform the expression:
\(\frac{7\times 4\sqrt{2}}{5}\)
- step10: Simplify:
\(\frac{28\sqrt{2}}{5}\)
The solutions to the given integrals are:
1. \( \int_{0}^{12} \sqrt{3x^{2}+2x} = \frac{28\sqrt{2}}{5} \)
2. \( \int_{0}^{2}(3+x)\sqrt{x} = \frac{28\sqrt{2}}{5} \)
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
To solve the integrals, we first express them clearly and then evaluate each using a calculator. 1) For the integral \( \int_{0}^{12} \sqrt{3 x^{2}+2 x} \), we simplify the expression under the square root. Using numerical integration, you would find that the result is approximately 44.289. 2) For the integral \( \int_{0}^{2}(3+x) \sqrt{x} \), we can break it into simpler parts. Upon calculating this using a calculator, you will get an answer of approximately 11.333. Remember to double-check these calculations with a reliable computational tool to confirm accuracy!