Question
upstudy study bank question image url

EXERCISE 7 Fully factorise each of the following. \( \begin{array}{ll}\text {-1. } 25 a^{2}-16 & \text { 2. } 9 b^{2}-1 \\ \text {-3. } 2 a^{2}+2 b^{2} & \text { 4. } 16 x^{2}-9 y^{2} \\ - \text { 5. } x^{2} y^{2}-1 & \text { 6. } 12 x^{8}-27 b^{6} \\ \text { 7. } 28 x^{3}-63 x b^{2} & \text { 8. } 125 m^{3}+15 m \\ \text { 9. }(2 x+3 y)^{2}-9 & \text { 10. }(3 a-2 b)^{2}-4 b^{2} \\ \text { 11. } 4 x^{2}-(3 x-2 y)^{2} & \text { 12. } 9 x^{2}(2 a-b)-16(2 a-b \\ \text { 13. } 25 a^{2}(a-3 b)+9(3 b-a) & \text { 14. } \frac{1}{3} x^{2}-3\end{array} \)

Ask by Parry Parsons. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the fully factored forms of each expression: 1. \( 25a^{2}-16 = (5a-4)(5a+4) \) 2. \( 9b^{2}-1 = (3b-1)(3b+1) \) 3. \( 2a^{2}+2b^{2} = 2(a^{2}+b^{2}) \) 4. \( 16x^{2}-9y^{2} = (4x-3y)(4x+3y) \) 5. \( x^{2}y^{2}-1 = (xy-1)(xy+1) \) 6. \( 12x^{8}-27b^{6} = 3(2x^{4}-3b^{3})(2x^{4}+3b^{3}) \) 7. \( 28x^{3}-63xb^{2} = 7x(2x-3b)(2x+3b) \) 8. \( 125m^{3}+15m = 5m(25m^{2}+3) \) 9. \( (2x+3y)^{2}-9 = (2x+3y-3)(2x+3y+3) \) 10. \( (3a-2b)^{2}-4b^{2} = (3a-4b)(3a+4b) \) 11. \( 4x^{2}-(3x-2y)^{2} = (-x+2y)(5x-2y) \) 12. \( 9x^{2}(2a-b)-16(2a-b) = (2a-b)(3x-4)(3x+4) \) 13. \( 25a^{2}(a-3b)+9(3b-a) = (5a-3)(5a+3)(-3b+a) \) 14. \( \frac{1}{3}x^{2}-3 = \frac{1}{3}(x-3)(x+3) \)

Solution

Factor the expression by following steps: - step0: Factor: \(2a^{2}+2b^{2}\) - step1: Factor the expression: \(2\left(a^{2}+b^{2}\right)\) Factor the expression \( 9 b^{2}-1 \). Factor the expression by following steps: - step0: Factor: \(9b^{2}-1\) - step1: Rewrite the expression: \(\left(3b\right)^{2}-1^{2}\) - step2: Factor the expression: \(\left(3b-1\right)\left(3b+1\right)\) Factor the expression \( 16 x^{2}-9 y^{2 \). Factor the expression by following steps: - step0: Factor: \(16x^{2}-9y^{2}\) - step1: Rewrite the expression: \(\left(4x\right)^{2}-\left(3y\right)^{2}\) - step2: Factor the expression: \(\left(4x-3y\right)\left(4x+3y\right)\) Factor the expression \( 12 x^{8}-27 b^{6 \). Factor the expression by following steps: - step0: Factor: \(12x^{8}-27b^{6}\) - step1: Factor the expression: \(3\left(4x^{8}-9b^{6}\right)\) - step2: Factor the expression: \(3\left(2x^{4}-3b^{3}\right)\left(2x^{4}+3b^{3}\right)\) Factor the expression \( x^{2} y^{2}-1 \). Factor the expression by following steps: - step0: Factor: \(x^{2}y^{2}-1\) - step1: Rewrite the expression: \(\left(xy\right)^{2}-1^{2}\) - step2: Factor the expression: \(\left(xy-1\right)\left(xy+1\right)\) Factor the expression \( (2 x+3 y)^{2}-9 \). Factor the expression by following steps: - step0: Factor: \(\left(2x+3y\right)^{2}-9\) - step1: Rewrite the expression: \(\left(2x+3y\right)^{2}-3^{2}\) - step2: Factor the expression: \(\left(2x+3y-3\right)\left(2x+3y+3\right)\) Factor the expression \( 125 m^{3}+15 m \). Factor the expression by following steps: - step0: Factor: \(125m^{3}+15m\) - step1: Rewrite the expression: \(5m\times 25m^{2}+5m\times 3\) - step2: Factor the expression: \(5m\left(25m^{2}+3\right)\) Factor the expression \( 28 x^{3}-63 x b^{2 \). Factor the expression by following steps: - step0: Factor: \(28x^{3}-63xb^{2}\) - step1: Factor the expression: \(7x\left(4x^{2}-9b^{2}\right)\) - step2: Factor the expression: \(7x\left(2x-3b\right)\left(2x+3b\right)\) Factor the expression \( \frac{1}{3} x^{2}-3 \). Factor the expression by following steps: - step0: Factor: \(\frac{1}{3}x^{2}-3\) - step1: Factor the expression: \(\frac{1}{3}\left(x^{2}-9\right)\) - step2: Factor the expression: \(\frac{1}{3}\left(x-3\right)\left(x+3\right)\) Factor the expression \( 4 x^{2}-(3 x-2 y)^{2 \). Factor the expression by following steps: - step0: Factor: \(4x^{2}-\left(3x-2y\right)^{2}\) - step1: Rewrite the expression: \(\left(2x\right)^{2}-\left(3x-2y\right)^{2}\) - step2: Factor the expression: \(\left(2x-\left(3x-2y\right)\right)\left(2x+3x-2y\right)\) - step3: Evaluate: \(\left(-x+2y\right)\left(2x+3x-2y\right)\) - step4: Evaluate: \(\left(-x+2y\right)\left(5x-2y\right)\) Factor the expression \( 9 x^{2}(2 a-b)-16(2 a-b \). Factor the expression by following steps: - step0: Factor: \(9x^{2}\left(2a-b\right)-16\left(2a-b\right)\) - step1: Factor the expression: \(\left(2a-b\right)\left(9x^{2}-16\right)\) - step2: Factor the expression: \(\left(2a-b\right)\left(3x-4\right)\left(3x+4\right)\) Factor the expression \( (3 a-2 b)^{2}-4 b^{2 \). Factor the expression by following steps: - step0: Factor: \(\left(3a-2b\right)^{2}-4b^{2}\) - step1: Rewrite the expression: \(\left(3a-2b\right)^{2}-\left(2b\right)^{2}\) - step2: Factor the expression: \(\left(3a-2b-2b\right)\left(3a-2b+2b\right)\) - step3: Evaluate: \(\left(3a-4b\right)\left(3a-2b+2b\right)\) - step4: Evaluate: \(\left(3a-4b\right)\times 3a\) Factor the expression \( 25 a^{2}-16 \). Factor the expression by following steps: - step0: Factor: \(25a^{2}-16\) - step1: Rewrite the expression: \(\left(5a\right)^{2}-4^{2}\) - step2: Factor the expression: \(\left(5a-4\right)\left(5a+4\right)\) Factor the expression \( 25 a^{2}(a-3 b)+9(3 b-a \). Factor the expression by following steps: - step0: Factor: \(25a^{2}\left(a-3b\right)+9\left(3b-a\right)\) - step1: Rewrite the expression: \(25a^{2}\left(-3b+a\right)-9\left(-3b+a\right)\) - step2: Factor the expression: \(\left(25a^{2}-9\right)\left(-3b+a\right)\) - step3: Factor the expression: \(\left(5a-3\right)\left(5a+3\right)\left(-3b+a\right)\) Here are the fully factored forms of each expression: 1. **\( 25 a^{2}-16 \)**: \[ (5a-4)(5a+4) \] 2. **\( 9 b^{2}-1 \)**: \[ (3b-1)(3b+1) \] 3. **\( 2 a^{2}+2 b^{2} \)**: \[ 2(a^{2}+b^{2}) \] 4. **\( 16 x^{2}-9 y^{2} \)**: \[ (4x-3y)(4x+3y) \] 5. **\( x^{2} y^{2}-1 \)**: \[ (xy-1)(xy+1) \] 6. **\( 12 x^{8}-27 b^{6} \)**: \[ 3(2x^{4}-3b^{3})(2x^{4}+3b^{3}) \] 7. **\( 28 x^{3}-63 x b^{2} \)**: \[ 7x(2x-3b)(2x+3b) \] 8. **\( 125 m^{3}+15 m \)**: \[ 5m(25m^{2}+3) \] 9. **\( (2 x+3 y)^{2}-9 \)**: \[ (2x+3y-3)(2x+3y+3) \] 10. **\( (3 a-2 b)^{2}-4 b^{2} \)**: \[ (3a-4b)(3a+4b) \] 11. **\( 4 x^{2}-(3 x-2 y)^{2} \)**: \[ (-x+2y)(5x-2y) \] 12. **\( 9 x^{2}(2 a-b)-16(2 a-b) \)**: \[ (2a-b)(3x-4)(3x+4) \] 13. **\( 25 a^{2}(a-3 b)+9(3 b-a) \)**: \[ (5a-3)(5a+3)(-3b+a) \] 14. **\( \frac{1}{3} x^{2}-3 \)**: \[ \frac{1}{3}(x-3)(x+3) \] These factorizations utilize various algebraic identities, including the difference of squares, common factors, and grouping techniques.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Sure! Let's tackle a couple of those tricky exercises with some friendly guidance and fun insights. First up, for numbers 1 and 2: 1. \( 25a^{2}-16 \) can be recognized as a difference of squares and can be factored as \( (5a - 4)(5a + 4) \). 2. Similarly, \( 9b^{2}-1 \) is another difference of squares that factors into \( (3b - 1)(3b + 1) \). Now, let’s get down to number 4: 4. \( 16x^{2}-9y^{2} \) is also a difference of squares, and it can be factored as \( (4x - 3y)(4x + 3y) \). And for exercise 8: 8. \( 125m^{3}+15m \) has a common factor \( 5m \), which gives us \( 5m(25m^{2} + 3) \). How neat is that?

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy