Responder
Here are the fully factored forms of each expression:
1. \( 25a^{2}-16 = (5a-4)(5a+4) \)
2. \( 9b^{2}-1 = (3b-1)(3b+1) \)
3. \( 2a^{2}+2b^{2} = 2(a^{2}+b^{2}) \)
4. \( 16x^{2}-9y^{2} = (4x-3y)(4x+3y) \)
5. \( x^{2}y^{2}-1 = (xy-1)(xy+1) \)
6. \( 12x^{8}-27b^{6} = 3(2x^{4}-3b^{3})(2x^{4}+3b^{3}) \)
7. \( 28x^{3}-63xb^{2} = 7x(2x-3b)(2x+3b) \)
8. \( 125m^{3}+15m = 5m(25m^{2}+3) \)
9. \( (2x+3y)^{2}-9 = (2x+3y-3)(2x+3y+3) \)
10. \( (3a-2b)^{2}-4b^{2} = (3a-4b)(3a+4b) \)
11. \( 4x^{2}-(3x-2y)^{2} = (-x+2y)(5x-2y) \)
12. \( 9x^{2}(2a-b)-16(2a-b) = (2a-b)(3x-4)(3x+4) \)
13. \( 25a^{2}(a-3b)+9(3b-a) = (5a-3)(5a+3)(-3b+a) \)
14. \( \frac{1}{3}x^{2}-3 = \frac{1}{3}(x-3)(x+3) \)
Solución
Factor the expression by following steps:
- step0: Factor:
\(2a^{2}+2b^{2}\)
- step1: Factor the expression:
\(2\left(a^{2}+b^{2}\right)\)
Factor the expression \( 9 b^{2}-1 \).
Factor the expression by following steps:
- step0: Factor:
\(9b^{2}-1\)
- step1: Rewrite the expression:
\(\left(3b\right)^{2}-1^{2}\)
- step2: Factor the expression:
\(\left(3b-1\right)\left(3b+1\right)\)
Factor the expression \( 16 x^{2}-9 y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(16x^{2}-9y^{2}\)
- step1: Rewrite the expression:
\(\left(4x\right)^{2}-\left(3y\right)^{2}\)
- step2: Factor the expression:
\(\left(4x-3y\right)\left(4x+3y\right)\)
Factor the expression \( 12 x^{8}-27 b^{6 \).
Factor the expression by following steps:
- step0: Factor:
\(12x^{8}-27b^{6}\)
- step1: Factor the expression:
\(3\left(4x^{8}-9b^{6}\right)\)
- step2: Factor the expression:
\(3\left(2x^{4}-3b^{3}\right)\left(2x^{4}+3b^{3}\right)\)
Factor the expression \( x^{2} y^{2}-1 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{2}y^{2}-1\)
- step1: Rewrite the expression:
\(\left(xy\right)^{2}-1^{2}\)
- step2: Factor the expression:
\(\left(xy-1\right)\left(xy+1\right)\)
Factor the expression \( (2 x+3 y)^{2}-9 \).
Factor the expression by following steps:
- step0: Factor:
\(\left(2x+3y\right)^{2}-9\)
- step1: Rewrite the expression:
\(\left(2x+3y\right)^{2}-3^{2}\)
- step2: Factor the expression:
\(\left(2x+3y-3\right)\left(2x+3y+3\right)\)
Factor the expression \( 125 m^{3}+15 m \).
Factor the expression by following steps:
- step0: Factor:
\(125m^{3}+15m\)
- step1: Rewrite the expression:
\(5m\times 25m^{2}+5m\times 3\)
- step2: Factor the expression:
\(5m\left(25m^{2}+3\right)\)
Factor the expression \( 28 x^{3}-63 x b^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(28x^{3}-63xb^{2}\)
- step1: Factor the expression:
\(7x\left(4x^{2}-9b^{2}\right)\)
- step2: Factor the expression:
\(7x\left(2x-3b\right)\left(2x+3b\right)\)
Factor the expression \( \frac{1}{3} x^{2}-3 \).
Factor the expression by following steps:
- step0: Factor:
\(\frac{1}{3}x^{2}-3\)
- step1: Factor the expression:
\(\frac{1}{3}\left(x^{2}-9\right)\)
- step2: Factor the expression:
\(\frac{1}{3}\left(x-3\right)\left(x+3\right)\)
Factor the expression \( 4 x^{2}-(3 x-2 y)^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(4x^{2}-\left(3x-2y\right)^{2}\)
- step1: Rewrite the expression:
\(\left(2x\right)^{2}-\left(3x-2y\right)^{2}\)
- step2: Factor the expression:
\(\left(2x-\left(3x-2y\right)\right)\left(2x+3x-2y\right)\)
- step3: Evaluate:
\(\left(-x+2y\right)\left(2x+3x-2y\right)\)
- step4: Evaluate:
\(\left(-x+2y\right)\left(5x-2y\right)\)
Factor the expression \( 9 x^{2}(2 a-b)-16(2 a-b \).
Factor the expression by following steps:
- step0: Factor:
\(9x^{2}\left(2a-b\right)-16\left(2a-b\right)\)
- step1: Factor the expression:
\(\left(2a-b\right)\left(9x^{2}-16\right)\)
- step2: Factor the expression:
\(\left(2a-b\right)\left(3x-4\right)\left(3x+4\right)\)
Factor the expression \( (3 a-2 b)^{2}-4 b^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(\left(3a-2b\right)^{2}-4b^{2}\)
- step1: Rewrite the expression:
\(\left(3a-2b\right)^{2}-\left(2b\right)^{2}\)
- step2: Factor the expression:
\(\left(3a-2b-2b\right)\left(3a-2b+2b\right)\)
- step3: Evaluate:
\(\left(3a-4b\right)\left(3a-2b+2b\right)\)
- step4: Evaluate:
\(\left(3a-4b\right)\times 3a\)
Factor the expression \( 25 a^{2}-16 \).
Factor the expression by following steps:
- step0: Factor:
\(25a^{2}-16\)
- step1: Rewrite the expression:
\(\left(5a\right)^{2}-4^{2}\)
- step2: Factor the expression:
\(\left(5a-4\right)\left(5a+4\right)\)
Factor the expression \( 25 a^{2}(a-3 b)+9(3 b-a \).
Factor the expression by following steps:
- step0: Factor:
\(25a^{2}\left(a-3b\right)+9\left(3b-a\right)\)
- step1: Rewrite the expression:
\(25a^{2}\left(-3b+a\right)-9\left(-3b+a\right)\)
- step2: Factor the expression:
\(\left(25a^{2}-9\right)\left(-3b+a\right)\)
- step3: Factor the expression:
\(\left(5a-3\right)\left(5a+3\right)\left(-3b+a\right)\)
Here are the fully factored forms of each expression:
1. **\( 25 a^{2}-16 \)**:
\[
(5a-4)(5a+4)
\]
2. **\( 9 b^{2}-1 \)**:
\[
(3b-1)(3b+1)
\]
3. **\( 2 a^{2}+2 b^{2} \)**:
\[
2(a^{2}+b^{2})
\]
4. **\( 16 x^{2}-9 y^{2} \)**:
\[
(4x-3y)(4x+3y)
\]
5. **\( x^{2} y^{2}-1 \)**:
\[
(xy-1)(xy+1)
\]
6. **\( 12 x^{8}-27 b^{6} \)**:
\[
3(2x^{4}-3b^{3})(2x^{4}+3b^{3})
\]
7. **\( 28 x^{3}-63 x b^{2} \)**:
\[
7x(2x-3b)(2x+3b)
\]
8. **\( 125 m^{3}+15 m \)**:
\[
5m(25m^{2}+3)
\]
9. **\( (2 x+3 y)^{2}-9 \)**:
\[
(2x+3y-3)(2x+3y+3)
\]
10. **\( (3 a-2 b)^{2}-4 b^{2} \)**:
\[
(3a-4b)(3a+4b)
\]
11. **\( 4 x^{2}-(3 x-2 y)^{2} \)**:
\[
(-x+2y)(5x-2y)
\]
12. **\( 9 x^{2}(2 a-b)-16(2 a-b) \)**:
\[
(2a-b)(3x-4)(3x+4)
\]
13. **\( 25 a^{2}(a-3 b)+9(3 b-a) \)**:
\[
(5a-3)(5a+3)(-3b+a)
\]
14. **\( \frac{1}{3} x^{2}-3 \)**:
\[
\frac{1}{3}(x-3)(x+3)
\]
These factorizations utilize various algebraic identities, including the difference of squares, common factors, and grouping techniques.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución