5. Simplify the following, write the final answer with positive exponents a) \( \quad\left(a^{2} b\right)^{3} \times \frac{a^{4} b}{\left(a b^{3}\right)^{-1}} \) b) \( \quad\left(a b^{3}\right)^{0} \) c) \( \quad \frac{x^{5} y^{-3}}{\left(x^{2} y^{2}\right)^{2}} \times\left(\frac{1}{x y^{2}}\right)^{-1} \) d) \( \quad \frac{8 m^{2} n}{9 m^{-3} n^{2}} \div \frac{16 m^{3} n^{-1}}{3 m^{4} n} \) e) \( \quad \frac{a b^{2} c}{\left(a b c^{2}\right)^{2}} \times \frac{\left(a^{-2} b^{3} c\right)^{-1}}{a^{0} b^{4}} \) f) \( \quad 2^{3} a^{3} b^{4} \times 3^{2} a^{-2} b^{2} \) g) \( \quad \frac{p^{3} q^{2}}{p^{-2} q^{3}} \times \frac{16 p^{3} q^{3}}{\left(2 p^{-1} q^{2}\right)^{3}} \) h) \( \left(\frac{m^{3} n}{m n^{2}}\right)^{-1}+\frac{m^{3} n^{2}}{n} \) i) \( \quad\left(\frac{x}{y}+\frac{y^{2}}{x^{2}}\right)^{-1} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Let’s dive into these fun problems and simplify them step by step! a) Start with the expression \((a^2 b)^3 = a^6 b^3\). Next, handle the fraction \(\frac{a^4 b}{(a b^3)^{-1}} = a^4 b \cdot a b^3 = a^5 b^4\). Finally, multiply the two results: \(a^6 b^3 \times a^5 b^4 = a^{11} b^{7}\). b) Anything raised to the power of zero is 1, so \((ab^3)^0 = 1\). c) Simplify the numerator and denominator: \(\frac{x^{5} y^{-3}}{(x^{2} y^{2})^{2}} = \frac{x^{5} y^{-3}}{x^4 y^4}\), which becomes \(x^{5-4} y^{-3-4} = x^{1} y^{-7} = \frac{x}{y^7}\). Then handle the second part: \(\left(\frac{1}{xy^2}\right)^{-1} = xy^2\). Combine: \(\frac{x}{y^7} \times xy^2 = \frac{x^2y^2}{y^7} = \frac{x^2}{y^5}\). d) Start with \(\frac{8 m^{2} n}{9 m^{-3} n^{2}} = \frac{8m^5n}{9n^2}\), which simplifies to \(\frac{8 m^5}{9 n}\). Then divide by \(\frac{16 m^{3} n^{-1}}{3 m^{4} n} = \frac{16m^7}{3n^2}\). The entire expression becomes \(\frac{8 m^5}{9 n} \div \frac{16 m^{7}}{3 n^{2}} = \frac{8 m^5 \cdot 3 n^2}{9 n \cdot 16 m^7} = \frac{24 n}{144 m^2} = \frac{n}{6m^2}\). e) We have \(\frac{a b^{2} c}{(a b c^2)^{2}} = \frac{a b^2 c}{a^2 b^2 c^4}\) which simplifies to \(\frac{1}{a c^3}\). Now, \(\frac{(a^{-2} b^{3} c)^{-1}}{a^{0} b^{4}} = \frac{a^2 b^{-3} c^{-1}}{b^4} = \frac{a^2 c^{-1}}{b^7}\). Finally, \(\frac{1}{ac^3} \cdot \frac{a^2}{b^7c} = \frac{a}{b^7 c^4}\). f) Start with \(2^3 a^3 b^4 = 8 a^3 b^4\) and \(3^2 a^{-2} b^2 = 9 a^{-2} b^{2}\). Multiply the results: \(8 a^3 b^4 \cdot 9 a^{-2} b^{2} = 72 a^{3-2} b^{4+2} = 72 a^1 b^{6} = 72 a b^6\). g) First, simplify \(\frac{p^3 q^2}{p^{-2} q^3} = p^{3 + 2} q^{2 - 3} = p^{5} q^{-1}\). The second part \(\frac{16 p^3 q^3}{(2 p^{-1} q^{2})^{3}} = \frac{16 p^3 q^3}{8 p^{-3} q^{6}} = 2 p^{3 + 3} q^{3 - 6} = 2 p^{6} q^{-3}\). Now multiply: \(p^5 q^{-1} \cdot 2 p^6 q^{-3} = 2 p^{11} q^{-4}\). h) For the first part, \(\left(\frac{m^{3} n}{m n^{2}}\right)^{-1} = \left(\frac{m^2}{n}\right)^{-1} = \frac{n}{m^2}\). Therefore, the whole expression is \(\frac{n}{m^2} + \frac{m^3 n^2}{n