Answer
**Problem 8**
The integral \(\int_{1}^{\infty} \frac{1}{2025[x]} \, dx\) diverges because the harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n}\) diverges.
---
**Problem 9**
The integral \(\int_{4}^{5} \frac{2x+1}{(x-1)(x-2)(x-3)} \, dx\) evaluates to:
\[
\frac{3}{2}\ln{4} - 5\ln{3} + \frac{7}{2}\ln{2} - \left( \frac{3}{2}\ln{3} - 5\ln{2} + \frac{7}{2}\ln{1} \right).
\]
Simplifying, the final result is:
\[
\frac{3}{2}\ln{4} - 5\ln{3} + \frac{7}{2}\ln{2} - \frac{3}{2}\ln{3} + 5\ln{2} = \frac{3}{2}\ln{4} - \frac{13}{2}\ln{3} + \frac{17}{2}\ln{2}.
\]
---
**Problem 10**
The integral \(\int_{0}^{1} x e^{x^{2}+e^{x^{2}}} \, dx\) does not have an elementary antiderivative and cannot be expressed in terms of basic functions.
Solution
**Problem 8**
We wish to evaluate
\[
\int_{1}^{\infty} \frac{1}{2025[x]} \, dx,
\]
where \([x]\) denotes the greatest integer less than or equal to \(x\).
Since \([x]\) is constant on any interval \([n,\, n+1)\) for integer \(n\), we break up the integral as follows:
\[
\int_{1}^{\infty} \frac{1}{2025[x]} \, dx=\frac{1}{2025}\sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{dx}{n}.
\]
On the interval \(x\in [n,\, n+1)\) we have \([x] = n\) and the length of the interval is 1, so
\[
\int_{n}^{n+1}\frac{dx}{n}=\frac{1}{n}.
\]
Thus,
\[
\int_{1}^{\infty} \frac{1}{2025[x]} \, dx=\frac{1}{2025}\sum_{n=1}^{\infty}\frac{1}{n}.
\]
The series \(\sum_{n=1}^{\infty}\frac{1}{n}\) is the harmonic series, which diverges. Therefore, the integral diverges.
---
**Problem 9**
We want to compute
\[
\int_{4}^{5} \frac{2x+1}{(x-1)(x-2)(x-3)} \, dx.
\]
**Step 1. Partial Fraction Decomposition**
Write
\[
\frac{2x+1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}.
\]
Multiplying both sides by \((x-1)(x-2)(x-3)\) gives:
\[
2x+1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2).
\]
Expand each term:
\[
A(x-2)(x-3)=A(x^2-5x+6),
\]
\[
B(x-1)(x-3)=B(x^2-4x+3),
\]
\[
C(x-1)(x-2)=C(x^2-3x+2).
\]
Thus,
\[
2x+1 = (A+B+C)x^2 + (-5A-4B-3C)x + (6A+3B+2C).
\]
Equate coefficients with the left-hand side (which has 0 as the coefficient of \(x^2\)):
\[
\begin{cases}
A+B+C=0,\\[1mm]
-5A-4B-3C = 2,\\[1mm]
6A+3B+2C = 1.
\end{cases}
\]
From the first equation, \(C = -A-B\). Substitute this into the other two equations:
For the \(x\)-coefficient:
\[
-5A-4B-3(-A-B) = -5A-4B+3A+3B = -2A-B = 2.
\]
Thus,
\[
-2A - B = 2 \quad \Longrightarrow \quad B = -2A - 2.
\]
For the constant term:
\[
6A+3B+2(-A-B) = 6A+3B-2A-2B = 4A+B = 1.
\]
Substitute \(B = -2A-2\):
\[
4A + (-2A-2) = 1 \quad \Longrightarrow \quad 2A - 2 = 1 \quad \Longrightarrow \quad 2A=3,
\]
so
\[
A=\frac{3}{2}.
\]
Then,
\[
B=-2\left(\frac{3}{2}\right)-2 = -3-2 = -5,
\]
and
\[
C=-A-B=-\frac{3}{2}-(-5)= -\frac{3}{2}+5=\frac{7}{2}.
\]
Thus, the decomposition is:
\[
\frac{2x+1}{(x-1)(x-2)(x-3)}=\frac{\frac{3}{2}}{x-1}-\frac{5}{x-2}+\frac{\frac{7}{2}}{x-3}.
\]
**Step 2. Integration**
Now integrate term by term from \(4\) to \(5\):
\[
\int_{4}^{5} \frac{2x+1}{(x-1)(x-2)(x-3)} \, dx = \frac{3}{2}\int_{4}^{5}\frac{dx}{x-1} - 5\int_{4}^{5}\frac{dx}{x-2} + \frac{7}{2}\int_{4}^{5}\frac{dx}{x-3}.
\]
The antiderivative of \(\frac{1}{x-a}\) is \(\ln{|x-a|}\), so:
\[
\frac{3}{2}\ln{|x-1|} - 5\ln{|x-2|} + \frac{7}{2}\ln{|x-3|}\Bigg|_{x=4}^{x=5}.
\]
Evaluate at the upper limit \(x=5\):
\[
\begin{aligned}
x=5:&\quad \ln{|5-1|}=\ln{4},\quad \ln{|5-2|}=\ln{3},\quad \ln{|5-3|}=\ln{2},\\[1mm]
\text{Thus:}\quad &\frac{3}{2}\ln{4}-5\ln{3}+\frac{7}{2}\ln{2}.
\end{aligned}
\]
Evaluate at the lower limit \(x=4\):
\[
\begin{aligned}
x=4:&\quad \ln{|4-1|}=\ln{3},\quad \ln{|4-2|
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution