Answer
The football will be in the air for about 3.6 seconds, travel a horizontal distance of approximately 63.2 meters, and reach a peak height of about 15.9 meters.
Solution
To solve the problem of a football kicked with an initial velocity of \( 25 \, \mathrm{m/s} \) at an angle of \( 45^\circ \), we can break it down into several steps:
### Step 1: Extract Known Conditions
- Initial velocity, \( v_0 = 25 \, \mathrm{m/s} \)
- Angle of projection, \( \theta = 45^\circ \)
- Acceleration due to gravity, \( g = 9.81 \, \mathrm{m/s}^2 \)
### Step 2: Calculate the Components of the Initial Velocity
The initial velocity can be broken down into horizontal and vertical components using trigonometric functions:
- Horizontal component:
\[
v_{0x} = v_0 \cdot \cos(\theta)
\]
- Vertical component:
\[
v_{0y} = v_0 \cdot \sin(\theta)
\]
### Step 3: Calculate Time of Flight
The time of flight \( T \) for a projectile launched and landing at the same height can be calculated using the formula:
\[
T = \frac{2 v_{0y}}{g}
\]
### Step 4: Calculate Horizontal Distance
The horizontal distance \( R \) (range) can be calculated using:
\[
R = v_{0x} \cdot T
\]
### Step 5: Calculate Peak Height
The peak height \( H \) can be calculated using:
\[
H = \frac{v_{0y}^2}{2g}
\]
Now, let's perform the calculations step by step.
#### Step 2: Calculate the Components of the Initial Velocity
Using \( \theta = 45^\circ \):
\[
v_{0x} = 25 \cdot \cos(45^\circ) = 25 \cdot \frac{\sqrt{2}}{2}
\]
\[
v_{0y} = 25 \cdot \sin(45^\circ) = 25 \cdot \frac{\sqrt{2}}{2}
\]
#### Step 3: Calculate Time of Flight
Now, we can calculate \( T \):
\[
T = \frac{2 v_{0y}}{g} = \frac{2 \cdot (25 \cdot \frac{\sqrt{2}}{2})}{9.81}
\]
#### Step 4: Calculate Horizontal Distance
Next, we calculate \( R \):
\[
R = v_{0x} \cdot T = (25 \cdot \frac{\sqrt{2}}{2}) \cdot T
\]
#### Step 5: Calculate Peak Height
Finally, we calculate \( H \):
\[
H = \frac{v_{0y}^2}{2g} = \frac{(25 \cdot \frac{\sqrt{2}}{2})^2}{2 \cdot 9.81}
\]
Now, let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(25\left(\frac{\sqrt{2}}{2}\right)\)
- step1: Remove the parentheses:
\(25\times \frac{\sqrt{2}}{2}\)
- step2: Multiply:
\(\frac{25\sqrt{2}}{2}\)
Calculate or simplify the expression \( 2 * (25 * (\sqrt(2)/2)) / 9.81 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2\left(25\left(\frac{\sqrt{2}}{2}\right)\right)}{9.81}\)
- step1: Remove the parentheses:
\(\frac{2\times 25\left(\frac{\sqrt{2}}{2}\right)}{9.81}\)
- step2: Remove the parentheses:
\(\frac{2\times 25\times \frac{\sqrt{2}}{2}}{9.81}\)
- step3: Multiply the terms:
\(\frac{25\sqrt{2}}{9.81}\)
- step4: Convert the expressions:
\(\frac{25\sqrt{2}}{\frac{981}{100}}\)
- step5: Multiply by the reciprocal:
\(25\sqrt{2}\times \frac{100}{981}\)
- step6: Multiply:
\(\frac{25\sqrt{2}\times 100}{981}\)
- step7: Multiply:
\(\frac{2500\sqrt{2}}{981}\)
Calculate or simplify the expression \( (25 * (\sqrt(2)/2))^2 / (2 * 9.81) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(25\left(\frac{\sqrt{2}}{2}\right)\right)^{2}}{\left(2\times 9.81\right)}\)
- step1: Remove the parentheses:
\(\frac{\left(25\left(\frac{\sqrt{2}}{2}\right)\right)^{2}}{2\times 9.81}\)
- step2: Remove the parentheses:
\(\frac{\left(25\times \frac{\sqrt{2}}{2}\right)^{2}}{2\times 9.81}\)
- step3: Multiply:
\(\frac{\left(\frac{25\sqrt{2}}{2}\right)^{2}}{2\times 9.81}\)
- step4: Multiply the numbers:
\(\frac{\left(\frac{25\sqrt{2}}{2}\right)^{2}}{19.62}\)
- step5: Convert the expressions:
\(\frac{\left(\frac{25\sqrt{2}}{2}\right)^{2}}{\frac{981}{50}}\)
- step6: Evaluate the power:
\(\frac{\frac{625}{2}}{\frac{981}{50}}\)
- step7: Multiply by the reciprocal:
\(\frac{625}{2}\times \frac{50}{981}\)
- step8: Reduce the numbers:
\(625\times \frac{25}{981}\)
- step9: Multiply:
\(\frac{625\times 25}{981}\)
- step10: Multiply:
\(\frac{15625}{981}\)
### Step 2: Calculate the Components of the Initial Velocity
The horizontal and vertical components of the initial velocity are:
- \( v_{0x} \approx 17.68 \, \mathrm{m/s} \)
- \( v_{0y} \approx 17.68 \, \mathrm{m/s} \)
### Step 3: Calculate Time of Flight
The time of flight \( T \) is calculated as:
\[
T \approx 3.60 \, \mathrm{s}
\]
### Step 4: Calculate Horizontal Distance
The horizontal distance \( R \) can be calculated using:
\[
R = v_{0x} \cdot T \approx 17.68 \cdot 3.60 \approx 63.17 \, \mathrm{m}
\]
### Step 5: Calculate Peak Height
The peak height \( H \) is calculated as:
\[
H \approx 15.93 \, \mathrm{m}
\]
### Summary of Results
- **Time of Flight**: \( T \approx 3.60 \, \mathrm{s} \)
- **Horizontal Distance (Range)**: \( R \approx 63.17 \, \mathrm{m} \)
- **Peak Height**: \( H \approx 15.93 \, \mathrm{m} \)
These calculations provide a complete analysis of the projectile motion of the football.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution