Answer
Решения уравнения \( \log _{3}(x-5)^{2}=\log _{3}(12 x-80) \) являются \( x = 15 \) и \( x = 7 \).
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\log_{3}{\left(\left(x-5\right)^{2}\right)}=\log_{3}{\left(12x-80\right)}\)
- step1: Find the domain:
\(\log_{3}{\left(\left(x-5\right)^{2}\right)}=\log_{3}{\left(12x-80\right)},x>\frac{20}{3}\)
- step2: Set the arguments equal:
\(\left(x-5\right)^{2}=12x-80\)
- step3: Move the expression to the left side:
\(\left(x-5\right)^{2}-\left(12x-80\right)=0\)
- step4: Remove the parentheses:
\(\left(x-5\right)^{2}-12x+80=0\)
- step5: Calculate:
\(x^{2}-22x+105=0\)
- step6: Factor the expression:
\(\left(x-15\right)\left(x-7\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&x-15=0\\&x-7=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=15\\&x=7\end{align}\)
- step9: Check if the solution is in the defined range:
\(\begin{align}&x=15\\&x=7\end{align},x>\frac{20}{3}\)
- step10: Find the intersection:
\(\begin{align}&x=15\\&x=7\end{align}\)
- step11: Rewrite:
\(x_{1}=7,x_{2}=15\)
Решим уравнение \( \log _{3}(x-5)^{2}=\log _{3}(12 x-80) \).
1. Поскольку логарифмы равны, мы можем приравнять их аргументы:
\[
(x-5)^{2} = 12x - 80
\]
2. Раскроем скобки и упростим уравнение:
\[
x^{2} - 10x + 25 = 12x - 80
\]
3. Переносим все члены в одну сторону:
\[
x^{2} - 10x - 12x + 25 + 80 = 0
\]
\[
x^{2} - 22x + 105 = 0
\]
4. Теперь решим квадратное уравнение \( x^{2} - 22x + 105 = 0 \) с помощью формулы корней:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
где \( a = 1, b = -22, c = 105 \).
5. Подставим значения:
\[
x = \frac{22 \pm \sqrt{(-22)^{2} - 4 \cdot 1 \cdot 105}}{2 \cdot 1}
\]
\[
x = \frac{22 \pm \sqrt{484 - 420}}{2}
\]
\[
x = \frac{22 \pm \sqrt{64}}{2}
\]
\[
x = \frac{22 \pm 8}{2}
\]
6. Находим два корня:
\[
x_{1} = \frac{30}{2} = 15
\]
\[
x_{2} = \frac{14}{2} = 7
\]
Таким образом, решения уравнения:
\[
x_{1} = 15, \quad x_{2} = 7
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution