Diketahui fungsi \( f(x)=\sin 2 x+\cos 3 x \). Jika \( f^{\prime}(x) \) adalah turunan pertama dari \( f(x) \), hitunglah nilai \( f^{\prime}\left(\frac{\pi}{6}\right) \). A. -3 B. -2 C. 0 D. 1 E. 2
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Untuk menemukan \( f^{\prime}(x) \), kita terlebih dahulu perlu menghitung turunan dari fungsi \( f(x) = \sin 2x + \cos 3x \). Menggunakan aturan turunan, kita dapat menghitung: \[ f^{\prime}(x) = \frac{d}{dx}(\sin 2x) + \frac{d}{dx}(\cos 3x) \] \[ = 2 \cos 2x - 3 \sin 3x \] Selanjutnya, kita substitusikan \( x = \frac{\pi}{6} \) ke dalam turunan \( f^{\prime}(x) \): \[ f^{\prime}\left(\frac{\pi}{6}\right) = 2 \cos\left(2 \cdot \frac{\pi}{6}\right) - 3 \sin\left(3 \cdot \frac{\pi}{6}\right) \] \[ = 2 \cos\left(\frac{\pi}{3}\right) - 3 \sin\left(\frac{\pi}{2}\right) \] Dengan nilai \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \) dan \( \sin\left(\frac{\pi}{2}\right) = 1 \), kita mendapatkan: \[ f^{\prime}\left(\frac{\pi}{6}\right) = 2 \cdot \frac{1}{2} - 3 \cdot 1 = 1 - 3 = -2 \] Jadi, nilai \( f^{\prime}\left(\frac{\pi}{6}\right) \) adalah: **B. -2**