Question
upstudy study bank question image url

1. triangle \( A B C \) with vertices \( A(-3,4) \), \( B(1,4) \), and \( C(3,1) \)

Ask by Chandler Stanley. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El triángulo \( ABC \) tiene los siguientes datos: - **Longitudes de los lados**: - \( AB = 4 \) - \( BC = \sqrt{13} \) - \( CA = 3\sqrt{5} \) - **Perímetro**: \( 4 + \sqrt{13} + 3\sqrt{5} \) - **Área**: \( 6 \) Si necesitas más información, avísame.

Solution

Para resolver el problema relacionado con el triángulo \( ABC \) con los vértices \( A(-3,4) \), \( B(1,4) \) y \( C(3,1) \), podemos realizar varios cálculos, como la longitud de los lados, el área y el perímetro del triángulo. Vamos a proceder paso a paso. ### 1. Longitud de los lados Utilizaremos la fórmula de la distancia entre dos puntos \( (x_1, y_1) \) y \( (x_2, y_2) \): \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] #### Longitud del lado \( AB \) Los puntos son \( A(-3, 4) \) y \( B(1, 4) \): \[ AB = \sqrt{(1 - (-3))^2 + (4 - 4)^2} = \sqrt{(1 + 3)^2 + 0^2} = \sqrt{4^2} = 4 \] #### Longitud del lado \( BC \) Los puntos son \( B(1, 4) \) y \( C(3, 1) \): \[ BC = \sqrt{(3 - 1)^2 + (1 - 4)^2} = \sqrt{(2)^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] #### Longitud del lado \( CA \) Los puntos son \( C(3, 1) \) y \( A(-3, 4) \): \[ CA = \sqrt{(-3 - 3)^2 + (4 - 1)^2} = \sqrt{(-6)^2 + (3)^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5} \] ### 2. Perímetro del triángulo El perímetro \( P \) se calcula sumando las longitudes de los lados: \[ P = AB + BC + CA = 4 + \sqrt{13} + 3\sqrt{5} \] ### 3. Área del triángulo Podemos usar la fórmula del área de un triángulo dado por sus vértices \( (x_1, y_1) \), \( (x_2, y_2) \), \( (x_3, y_3) \): \[ \text{Área} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Sustituyendo los puntos \( A(-3, 4) \), \( B(1, 4) \), y \( C(3, 1) \): \[ \text{Área} = \frac{1}{2} \left| -3(4 - 1) + 1(1 - 4) + 3(4 - 4) \right| \] \[ = \frac{1}{2} \left| -3(3) + 1(-3) + 3(0) \right| \] \[ = \frac{1}{2} \left| -9 - 3 + 0 \right| = \frac{1}{2} \left| -12 \right| = \frac{12}{2} = 6 \] ### Resumen de resultados - Longitudes de los lados: - \( AB = 4 \) - \( BC = \sqrt{13} \) - \( CA = 3\sqrt{5} \) - Perímetro \( P = 4 + \sqrt{13} + 3\sqrt{5} \) - Área del triángulo = \( 6 \) Si necesitas más información o cálculos adicionales, házmelo saber.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that triangles are not just basic shapes in geometry but have a fascinating history? The study of triangles dates back to ancient civilizations such as the Egyptians and Babylonians, who utilized triangles in their architectural designs and land surveying. The Pythagorean theorem, a crucial principle for understanding right triangles, was discovered by Greek mathematician Pythagoras, proving especially useful in navigation and astronomy. In the real world, triangles play a critical role in engineering and architecture! Their stability and strength make them ideal shapes for constructing bridges, buildings, and towers. For instance, the Eiffel Tower in Paris effectively uses a triangular structure to withstand wind forces. If you ever enjoyed building with blocks, you were probably unknowingly creating triangular shapes that ensure stability!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy