Question
upstudy study bank question image url

3. \( \begin{aligned} \frac{x^{2}-y^{2}}{\sqrt[3]{x}-\sqrt[3]{y}}=\frac{x^{2}-y^{2}}{\sqrt[3]{x}-\sqrt[3]{y}} * \frac{\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}}{\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}}=\frac{(x+y)(x-y)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)}{x-y} \\ \quad=(x+y)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)\end{aligned} \)

Ask by Turner Greene. in Colombia
Mar 08,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión simplificada es \( (x + y)\left(\sqrt[3]{x^{2}} + \sqrt[3]{xy} + \sqrt[3]{y^{2}}\right) \).

Solution

1. Empezamos reconociendo que se puede factorizar el numerador utilizando la identidad de la diferencia de cuadrados: \[ x^2 - y^2 = (x+y)(x-y) \] 2. Se multiplica y divide por la expresión \[ \sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}, \] de modo que se tenga: \[ \frac{x^2-y^2}{\sqrt[3]{x}-\sqrt[3]{y}} \cdot \frac{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}. \] 3. Al sustituir la factorización en el numerador, queda: \[ \frac{(x+y)(x-y)\left(\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}\right)}{\sqrt[3]{x}-\sqrt[3]{y}}. \] 4. Observamos que se cumple la identidad de factorización para la diferencia de cubos: \[ (\sqrt[3]{x}-\sqrt[3]{y})\left(\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}\right) = x-y. \] De esta manera, podemos reemplazar el denominador: \[ \sqrt[3]{x}-\sqrt[3]{y} = \frac{x-y}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}. \] 5. Al sustituir en la fracción, los términos \((x-y)\) se cancelan, quedando: \[ (x+y)\left(\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}\right). \] Por lo tanto, la expresión original se simplifica a \[ (x+y)\left(\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}\right). \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the formula you just explored is a neat illustration of the technique known as "multiplying by the conjugate"? This is analogous to how we simplify expressions in algebra. By substituting in the cubic roots and employing clever factorization, we reduce complex ratios into more manageable forms. This technique has been used for centuries by mathematicians to tackle not just algebra but also calculus problems! Moving to real-world application, this expression can relate to fields like physics and engineering. For instance, when calculating forces, if you have variables representing different parameters (like mass and acceleration), expressions derived from algebra help us understand the motion of objects under varying forces. Mastering simplification techniques can save time and enhance comprehension when dealing with complex real-world scenarios!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy