Answer
Solutions:
1. \( x = \frac{5 - \sqrt{37}}{6} \) and \( x = \frac{5 + \sqrt{37}}{6} \)
2. \( x = 2 \) and \( x = 4 \)
3. \( x < 0 \) or \( x > 2 \)
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-6x+8=0\)
- step1: Factor the expression:
\(\left(x-4\right)\left(x-2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-4=0\\&x-2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=4\\&x=2\end{align}\)
- step4: Rewrite:
\(x_{1}=2,x_{2}=4\)
Solve the equation \( 3x^{2}-5x-1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(3x^{2}-5x-1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}\)
- step2: Simplify the expression:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3\left(-1\right)}}{6}\)
- step3: Simplify the expression:
\(x=\frac{5\pm \sqrt{37}}{6}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{5+\sqrt{37}}{6}\\&x=\frac{5-\sqrt{37}}{6}\end{align}\)
- step5: Rewrite:
\(x_{1}=\frac{5-\sqrt{37}}{6},x_{2}=\frac{5+\sqrt{37}}{6}\)
Solve the equation \( 4x-2x^{2}<0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(4x-2x^{2}<0\)
- step1: Rewrite the expression:
\(4x-2x^{2}=0\)
- step2: Factor the expression:
\(2x\left(2-x\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2x=0\\&2-x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=0\\&x=2\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<0\\&02\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-1\\&x_{2}=1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<0\textrm{ }\textrm{is the solution}\\&02\textrm{ }\textrm{is the solution}\end{align}\)
- step8: The final solution is \(x \in \left(-\infty,0\right)\cup \left(2,+\infty\right):\)
\(x \in \left(-\infty,0\right)\cup \left(2,+\infty\right)\)
Let's solve each of the equations step by step.
### 1.1.1: Solve \( 3x^{2}-5x-1=0 \)
Using the quadratic formula, we find the solutions for \( x \):
\[
x_{1} = \frac{5 - \sqrt{37}}{6}, \quad x_{2} = \frac{5 + \sqrt{37}}{6}
\]
### 1.1.2: Solve \( x^{2}-6x+8=0 \)
This is a simple quadratic equation. The solutions are:
\[
x_{1} = 2, \quad x_{2} = 4
\]
### 1.1.3: Solve \( 4x-2x^{2}<0 \)
To solve the inequality, we first rewrite it:
\[
-2x^{2} + 4x < 0 \quad \Rightarrow \quad 2x^{2} - 4x > 0 \quad \Rightarrow \quad 2x(x - 2) > 0
\]
The critical points are \( x = 0 \) and \( x = 2 \). Testing intervals around these points, we find:
\[
x \in (-\infty, 0) \cup (2, +\infty)
\]
### Summary of Solutions:
1. \( 3x^{2}-5x-1=0 \) gives \( x_{1} = \frac{5 - \sqrt{37}}{6}, x_{2} = \frac{5 + \sqrt{37}}{6} \)
2. \( x^{2}-6x+8=0 \) gives \( x_{1} = 2, x_{2} = 4 \)
3. \( 4x-2x^{2}<0 \) gives \( x \in (-\infty, 0) \cup (2, +\infty) \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution