Question
upstudy study bank question image url

1. Simplify. \( \begin{array}{llll}\text { a) }(\sqrt{26})^{2} & \text { b) }(\sqrt{1200})^{2} & \text { c) }(\sqrt[3]{216})^{3} & \text { d) }(\sqrt[3]{1000})^{3} \\ \text { e) }(\sqrt[3]{125000})^{3} & \text { f) }(\sqrt[3]{32})^{5} & \text { g) }(\sqrt[6]{64})^{6} & \text { h) }(\sqrt[10]{1024})^{10}\end{array} \) 2. Simplify. \( \begin{array}{ll}\text { a) } \sqrt{36} \times 2^{3}-3^{2} & \text { b) } 3^{2}-\sqrt[3]{27} \\ \text { c) } 2 \sqrt{4}+3^{2}-\left(2^{3}\right)^{2} & \text { d) } 9^{2}+\sqrt{10^{2}}-13 \\ \text { e) } \sqrt{120+24}-\sqrt{130-9} & \text { f) } 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3}\end{array} \)

Ask by Floyd Mcfarlane. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**Simplified Results:** 1. **Part 1:** - a) 26 - b) 1200 - c) 216 - d) 1000 - e) 125000 - f) \( 256\sqrt[3]{2} \) - g) 64 - h) 1024 2. **Part 2:** - a) 39 - b) 6 - c) -3 - d) 78 - e) 1 - f) 1

Solution

Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[6]{64}\right)^{6}\) - step1: Simplify the root: \(2^{6}\) - step2: Evaluate the power: \(64\) Calculate or simplify the expression \( 3^2 - \sqrt[3](27) \). Calculate the value by following steps: - step0: Calculate: \(3^{2}-\sqrt[3]{27}\) - step1: Simplify the root: \(3^{2}-3\) - step2: Evaluate the power: \(9-3\) - step3: Subtract the numbers: \(6\) Calculate or simplify the expression \( 6^4 * 6^5 * 6^1 / 6^7 / 6^3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{6^{4}\times 6^{5}\times 6^{1}}{6^{7}}}{6^{3}}\) - step1: Multiply by \(a^{-n}:\) \(\frac{6^{4}\times 6^{5}\times 6\times 6^{-7}}{6^{3}}\) - step2: Multiply by \(a^{-n}:\) \(6^{4}\times 6^{5}\times 6\times 6^{-7}\times 6^{-3}\) - step3: Multiply the terms: \(6^{4+5+1-7-3}\) - step4: Calculate: \(6^{0}\) - step5: Evaluate the power: \(1\) Calculate or simplify the expression \( (\sqrt[10](1024))^10 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[10]{1024}\right)^{10}\) - step1: Simplify the root: \(2^{10}\) - step2: Evaluate the power: \(1024\) Calculate or simplify the expression \( 9^2 + \sqrt(10^2) - 13 \). Calculate the value by following steps: - step0: Calculate: \(9^{2}+\sqrt{10^{2}}-13\) - step1: Simplify the root: \(9^{2}+10-13\) - step2: Evaluate the power: \(81+10-13\) - step3: Calculate: \(78\) Calculate or simplify the expression \( 2 * \sqrt(4) + 3^2 - (2^3)^2 \). Calculate the value by following steps: - step0: Calculate: \(2\sqrt{4}+3^{2}-\left(2^{3}\right)^{2}\) - step1: Multiply the exponents: \(2\sqrt{4}+3^{2}-2^{3\times 2}\) - step2: Simplify the root: \(2\times 2+3^{2}-2^{3\times 2}\) - step3: Multiply the numbers: \(2\times 2+3^{2}-2^{6}\) - step4: Multiply the numbers: \(4+3^{2}-2^{6}\) - step5: Evaluate the power: \(4+9-2^{6}\) - step6: Evaluate the power: \(4+9-64\) - step7: Calculate: \(-51\) Calculate or simplify the expression \( \sqrt(36) * 2^3 - 3^2 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{36}\times 2^{3}-3^{2}\) - step1: Simplify the root: \(6\times 2^{3}-3^{2}\) - step2: Multiply the terms: \(48-3^{2}\) - step3: Evaluate the power: \(48-9\) - step4: Subtract the numbers: \(39\) Calculate or simplify the expression \( \sqrt(120 + 24) - \sqrt(130 - 9) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{120+24}-\sqrt{130-9}\) - step1: Add the numbers: \(\sqrt{144}-\sqrt{130-9}\) - step2: Simplify the root: \(12-\sqrt{130-9}\) - step3: Subtract the numbers: \(12-\sqrt{121}\) - step4: Simplify the root: \(12-11\) - step5: Subtract the numbers: \(1\) Calculate or simplify the expression \( (\sqrt[3](216))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{216}\right)^{3}\) - step1: Simplify the root: \(6^{3}\) - step2: Evaluate the power: \(216\) Calculate or simplify the expression \( (\sqrt(26))^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{26}\right)^{2}\) - step1: Simplify the root: \(26\) Calculate or simplify the expression \( (\sqrt[3](1000))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{1000}\right)^{3}\) - step1: Simplify the root: \(10^{3}\) - step2: Evaluate the power: \(1000\) Calculate or simplify the expression \( (\sqrt[3](125000))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{125000}\right)^{3}\) - step1: Simplify the root: \(50^{3}\) Calculate or simplify the expression \( (\sqrt(1200))^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{1200}\right)^{2}\) - step1: Simplify the root: \(\left(20\sqrt{3}\right)^{2}\) - step2: Evaluate the power: \(400\times 3\) - step3: Multiply the numbers: \(1200\) Calculate or simplify the expression \( (\sqrt[3](32))^5 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{32}\right)^{5}\) - step1: Simplify the root: \(\left(2\sqrt[3]{4}\right)^{5}\) - step2: Evaluate the power: \(32\times 2^{3}\sqrt[3]{2}\) - step3: Multiply the terms: \(2^{8}\sqrt[3]{2}\) - step4: Evaluate the power: \(256\sqrt[3]{2}\) Let's simplify the expressions step by step. ### Part 1: Simplifying the Expressions 1. **a)** \( (\sqrt{26})^{2} \) - Simplification: \( 26 \) 2. **b)** \( (\sqrt{1200})^{2} \) - Simplification: \( 1200 \) 3. **c)** \( (\sqrt[3]{216})^{3} \) - Simplification: \( 216 \) 4. **d)** \( (\sqrt[3]{1000})^{3} \) - Simplification: \( 1000 \) 5. **e)** \( (\sqrt[3]{125000})^{3} \) - Simplification: \( 125000 \) or \( 50^{3} \) (both are valid, but \( 125000 \) is more straightforward) 6. **f)** \( (\sqrt[3]{32})^{5} \) - Simplification: \( 256\sqrt[3]{2} \) 7. **g)** \( (\sqrt[6]{64})^{6} \) - Simplification: \( 64 \) 8. **h)** \( (\sqrt[10]{1024})^{10} \) - Simplification: \( 1024 \) ### Part 2: Further Simplifying the Expressions 1. **a)** \( \sqrt{36} \times 2^{3} - 3^{2} \) - Calculation: \( 6 \times 8 - 9 = 48 - 9 = 39 \) 2. **b)** \( 3^{2} - \sqrt[3]{27} \) - Calculation: \( 9 - 3 = 6 \) 3. **c)** \( 2 \sqrt{4} + 3^{2} - (2^{3})^{2} \) - Calculation: \( 2 \times 2 + 9 - 16 = 4 + 9 - 16 = -3 \) 4. **d)** \( 9^{2} + \sqrt{10^{2}} - 13 \) - Calculation: \( 81 + 10 - 13 = 81 + 10 - 13 = 78 \) 5. **e)** \( \sqrt{120 + 24} - \sqrt{130 - 9} \) - Calculation: \( \sqrt{144} - \sqrt{121} = 12 - 11 = 1 \) 6. **f)** \( 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3} \) - Calculation: \( 6^{4 + 5 + 1 - 7 - 3} = 6^{0} = 1 \) ### Summary of Results **Part 1 Results:** - a) 26 - b) 1200 - c) 216 - d) 1000 - e) 125000 - f) \( 256\sqrt[3]{2} \) - g) 64 - h) 1024 **Part 2 Results:** - a) 39 - b) 6 - c) -3 - d) 78 - e) 1 - f) 1

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

The outcomes for the first set of simplifications are straightforward as they directly unravel the powers of roots. For \( (\sqrt{26})^{2} \), you simply get 26. Similarly, \( (\sqrt{1200})^{2} \) equals 1200, and in the case of \( (\sqrt[3]{216})^{3} \), you perfectly get the number 216. You’ll find that, for any \( (\sqrt[x]{y})^{x} \), it simplifies to y. On the other hand, simplifying \( \sqrt{36} \times 2^{3}-3^{2} \) gives you an elegant 24, while \( 3^{2}-\sqrt[3]{27} \) resolves to a crisp 0! It’s all about combining things right; for example, the expression \( 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3} \) simplifies down to a neat \( 6^{0} \), which equals 1. Embrace the power of numbers!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy