Answer
**Simplified Results:**
1. **Part 1:**
- a) 26
- b) 1200
- c) 216
- d) 1000
- e) 125000
- f) \( 256\sqrt[3]{2} \)
- g) 64
- h) 1024
2. **Part 2:**
- a) 39
- b) 6
- c) -3
- d) 78
- e) 1
- f) 1
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[6]{64}\right)^{6}\)
- step1: Simplify the root:
\(2^{6}\)
- step2: Evaluate the power:
\(64\)
Calculate or simplify the expression \( 3^2 - \sqrt[3](27) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{2}-\sqrt[3]{27}\)
- step1: Simplify the root:
\(3^{2}-3\)
- step2: Evaluate the power:
\(9-3\)
- step3: Subtract the numbers:
\(6\)
Calculate or simplify the expression \( 6^4 * 6^5 * 6^1 / 6^7 / 6^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\frac{6^{4}\times 6^{5}\times 6^{1}}{6^{7}}}{6^{3}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{6^{4}\times 6^{5}\times 6\times 6^{-7}}{6^{3}}\)
- step2: Multiply by \(a^{-n}:\)
\(6^{4}\times 6^{5}\times 6\times 6^{-7}\times 6^{-3}\)
- step3: Multiply the terms:
\(6^{4+5+1-7-3}\)
- step4: Calculate:
\(6^{0}\)
- step5: Evaluate the power:
\(1\)
Calculate or simplify the expression \( (\sqrt[10](1024))^10 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[10]{1024}\right)^{10}\)
- step1: Simplify the root:
\(2^{10}\)
- step2: Evaluate the power:
\(1024\)
Calculate or simplify the expression \( 9^2 + \sqrt(10^2) - 13 \).
Calculate the value by following steps:
- step0: Calculate:
\(9^{2}+\sqrt{10^{2}}-13\)
- step1: Simplify the root:
\(9^{2}+10-13\)
- step2: Evaluate the power:
\(81+10-13\)
- step3: Calculate:
\(78\)
Calculate or simplify the expression \( 2 * \sqrt(4) + 3^2 - (2^3)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(2\sqrt{4}+3^{2}-\left(2^{3}\right)^{2}\)
- step1: Multiply the exponents:
\(2\sqrt{4}+3^{2}-2^{3\times 2}\)
- step2: Simplify the root:
\(2\times 2+3^{2}-2^{3\times 2}\)
- step3: Multiply the numbers:
\(2\times 2+3^{2}-2^{6}\)
- step4: Multiply the numbers:
\(4+3^{2}-2^{6}\)
- step5: Evaluate the power:
\(4+9-2^{6}\)
- step6: Evaluate the power:
\(4+9-64\)
- step7: Calculate:
\(-51\)
Calculate or simplify the expression \( \sqrt(36) * 2^3 - 3^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{36}\times 2^{3}-3^{2}\)
- step1: Simplify the root:
\(6\times 2^{3}-3^{2}\)
- step2: Multiply the terms:
\(48-3^{2}\)
- step3: Evaluate the power:
\(48-9\)
- step4: Subtract the numbers:
\(39\)
Calculate or simplify the expression \( \sqrt(120 + 24) - \sqrt(130 - 9) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{120+24}-\sqrt{130-9}\)
- step1: Add the numbers:
\(\sqrt{144}-\sqrt{130-9}\)
- step2: Simplify the root:
\(12-\sqrt{130-9}\)
- step3: Subtract the numbers:
\(12-\sqrt{121}\)
- step4: Simplify the root:
\(12-11\)
- step5: Subtract the numbers:
\(1\)
Calculate or simplify the expression \( (\sqrt[3](216))^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[3]{216}\right)^{3}\)
- step1: Simplify the root:
\(6^{3}\)
- step2: Evaluate the power:
\(216\)
Calculate or simplify the expression \( (\sqrt(26))^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt{26}\right)^{2}\)
- step1: Simplify the root:
\(26\)
Calculate or simplify the expression \( (\sqrt[3](1000))^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[3]{1000}\right)^{3}\)
- step1: Simplify the root:
\(10^{3}\)
- step2: Evaluate the power:
\(1000\)
Calculate or simplify the expression \( (\sqrt[3](125000))^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[3]{125000}\right)^{3}\)
- step1: Simplify the root:
\(50^{3}\)
Calculate or simplify the expression \( (\sqrt(1200))^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt{1200}\right)^{2}\)
- step1: Simplify the root:
\(\left(20\sqrt{3}\right)^{2}\)
- step2: Evaluate the power:
\(400\times 3\)
- step3: Multiply the numbers:
\(1200\)
Calculate or simplify the expression \( (\sqrt[3](32))^5 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt[3]{32}\right)^{5}\)
- step1: Simplify the root:
\(\left(2\sqrt[3]{4}\right)^{5}\)
- step2: Evaluate the power:
\(32\times 2^{3}\sqrt[3]{2}\)
- step3: Multiply the terms:
\(2^{8}\sqrt[3]{2}\)
- step4: Evaluate the power:
\(256\sqrt[3]{2}\)
Let's simplify the expressions step by step.
### Part 1: Simplifying the Expressions
1. **a)** \( (\sqrt{26})^{2} \)
- Simplification: \( 26 \)
2. **b)** \( (\sqrt{1200})^{2} \)
- Simplification: \( 1200 \)
3. **c)** \( (\sqrt[3]{216})^{3} \)
- Simplification: \( 216 \)
4. **d)** \( (\sqrt[3]{1000})^{3} \)
- Simplification: \( 1000 \)
5. **e)** \( (\sqrt[3]{125000})^{3} \)
- Simplification: \( 125000 \) or \( 50^{3} \) (both are valid, but \( 125000 \) is more straightforward)
6. **f)** \( (\sqrt[3]{32})^{5} \)
- Simplification: \( 256\sqrt[3]{2} \)
7. **g)** \( (\sqrt[6]{64})^{6} \)
- Simplification: \( 64 \)
8. **h)** \( (\sqrt[10]{1024})^{10} \)
- Simplification: \( 1024 \)
### Part 2: Further Simplifying the Expressions
1. **a)** \( \sqrt{36} \times 2^{3} - 3^{2} \)
- Calculation: \( 6 \times 8 - 9 = 48 - 9 = 39 \)
2. **b)** \( 3^{2} - \sqrt[3]{27} \)
- Calculation: \( 9 - 3 = 6 \)
3. **c)** \( 2 \sqrt{4} + 3^{2} - (2^{3})^{2} \)
- Calculation: \( 2 \times 2 + 9 - 16 = 4 + 9 - 16 = -3 \)
4. **d)** \( 9^{2} + \sqrt{10^{2}} - 13 \)
- Calculation: \( 81 + 10 - 13 = 81 + 10 - 13 = 78 \)
5. **e)** \( \sqrt{120 + 24} - \sqrt{130 - 9} \)
- Calculation: \( \sqrt{144} - \sqrt{121} = 12 - 11 = 1 \)
6. **f)** \( 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3} \)
- Calculation: \( 6^{4 + 5 + 1 - 7 - 3} = 6^{0} = 1 \)
### Summary of Results
**Part 1 Results:**
- a) 26
- b) 1200
- c) 216
- d) 1000
- e) 125000
- f) \( 256\sqrt[3]{2} \)
- g) 64
- h) 1024
**Part 2 Results:**
- a) 39
- b) 6
- c) -3
- d) 78
- e) 1
- f) 1
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution