Question
upstudy study bank question image url

Verify that \( t=\frac{\pi}{4} \) at the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \). That is, evaluate \( \mathbf{r}\left(\frac{\pi}{4}\right) \). Find the unit tangent vector at \( t=\frac{\pi}{4} \) \[ \begin{aligned} \mathbf{T}(t) & =\frac{1}{6}\langle-6 \sin t, 6 \cos t, 0\rangle \\ \mathbf{T}\left(\frac{\pi}{4}\right) & =\frac{1}{6}\left(-6 \sin \left(\frac{\pi}{4}\right), 6 \cos \left(\frac{\pi}{4}\right), 0\right\rangle\end{aligned} \]

Ask by Wright Owen. in the United States
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

At \( t = \frac{\pi}{4} \), the unit tangent vector is \( \mathbf{T}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \).

Solution

To verify that \( t = \frac{\pi}{4} \) corresponds to the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \), we need to evaluate the position vector \( \mathbf{r}\left(\frac{\pi}{4}\right) \). ### Step 1: Evaluate \( \mathbf{r}\left(\frac{\pi}{4}\right) \) Assuming the position vector \( \mathbf{r}(t) \) is given by the components derived from the unit tangent vector \( \mathbf{T}(t) \), we can express it as follows: \[ \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle \] From the unit tangent vector provided: \[ \mathbf{T}(t) = \frac{1}{6}\langle -6 \sin t, 6 \cos t, 0 \rangle = \langle -\sin t, \cos t, 0 \rangle \] We can infer that the components of \( \mathbf{r}(t) \) might be related to the sine and cosine functions. Let's assume: \[ x(t) = -6 \sin t, \quad y(t) = 6 \cos t, \quad z(t) = 7 \] Now, we will evaluate \( \mathbf{r}\left(\frac{\pi}{4}\right) \): \[ x\left(\frac{\pi}{4}\right) = -6 \sin\left(\frac{\pi}{4}\right) = -6 \cdot \frac{\sqrt{2}}{2} = -3\sqrt{2} \] \[ y\left(\frac{\pi}{4}\right) = 6 \cos\left(\frac{\pi}{4}\right) = 6 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2} \] \[ z\left(\frac{\pi}{4}\right) = 7 \] Thus, we have: \[ \mathbf{r}\left(\frac{\pi}{4}\right) = \langle -3\sqrt{2}, 3\sqrt{2}, 7 \rangle \] ### Step 2: Verify the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \) Now, we need to check if this matches the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \): \[ \frac{6}{\sqrt{2}} = 3\sqrt{2} \] Thus, the coordinates do not match. Therefore, \( t = \frac{\pi}{4} \) does not correspond to the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \). ### Step 3: Find the unit tangent vector at \( t = \frac{\pi}{4} \) Now, let's find the unit tangent vector \( \mathbf{T}\left(\frac{\pi}{4}\right) \): \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{6}\left(-6 \sin\left(\frac{\pi}{4}\right), 6 \cos\left(\frac{\pi}{4}\right), 0\right) \] Calculating the components: \[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Substituting these values: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{6}\left(-6 \cdot \frac{\sqrt{2}}{2}, 6 \cdot \frac{\sqrt{2}}{2}, 0\right) = \frac{1}{6}\left(-3\sqrt{2}, 3\sqrt{2}, 0\right) \] Thus, we have: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \] ### Conclusion 1. The point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \) does not correspond to \( t = \frac{\pi}{4} \). 2. The unit tangent vector at \( t = \frac{\pi}{4} \) is: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To verify that \( t=\frac{\pi}{4} \) at the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \), we start by evaluating \( \mathbf{r}\left(\frac{\pi}{4}\right) \). Assuming \( \mathbf{r}(t) = \langle 6 \cos t, 6 \sin t, 7 \rangle \), then for \( t = \frac{\pi}{4} \): \[ \mathbf{r}\left(\frac{\pi}{4}\right) = \left(6 \cos\left(\frac{\pi}{4}\right), 6 \sin\left(\frac{\pi}{4}\right), 7\right) = \left(6 \cdot \frac{1}{\sqrt{2}}, 6 \cdot \frac{1}{\sqrt{2}}, 7\right) = \left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \] Since this matches the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \), we confirm the verification is correct. Now, we will find the unit tangent vector \( \mathbf{T}\left(t\right) \) at \( t=\frac{\pi}{4} \): Carrying out the calculation: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{6}\langle-6 \sin \left(\frac{\pi}{4}\right), 6 \cos \left(\frac{\pi}{4}\right), 0\rangle = \frac{1}{6}\langle-6 \cdot \frac{1}{\sqrt{2}}, 6 \cdot \frac{1}{\sqrt{2}}, 0\rangle = \langle -\sqrt{2}, \sqrt{2}, 0 \rangle \] Finally, normalizing the tangent vector gives us: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{(-\sqrt{2})^2 + (\sqrt{2})^2}} \langle -\sqrt{2}, \sqrt{2}, 0 \rangle = \frac{1}{2} \langle -\sqrt{2}, \sqrt{2}, 0 \rangle \] Thus, the unit tangent vector \( \mathbf{T}\left(\frac{\pi}{4}\right) \) is: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy