Pregunta
upstudy study bank question image url

Verify that \( t=\frac{\pi}{4} \) at the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \). That is, evaluate \( \mathbf{r}\left(\frac{\pi}{4}\right) \). Find the unit tangent vector at \( t=\frac{\pi}{4} \) \[ \begin{aligned} \mathbf{T}(t) & =\frac{1}{6}\langle-6 \sin t, 6 \cos t, 0\rangle \\ \mathbf{T}\left(\frac{\pi}{4}\right) & =\frac{1}{6}\left(-6 \sin \left(\frac{\pi}{4}\right), 6 \cos \left(\frac{\pi}{4}\right), 0\right\rangle\end{aligned} \]

Ask by Wright Owen. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At \( t = \frac{\pi}{4} \), the unit tangent vector is \( \mathbf{T}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To verify that \( t=\frac{\pi}{4} \) at the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \), we start by evaluating \( \mathbf{r}\left(\frac{\pi}{4}\right) \). Assuming \( \mathbf{r}(t) = \langle 6 \cos t, 6 \sin t, 7 \rangle \), then for \( t = \frac{\pi}{4} \): \[ \mathbf{r}\left(\frac{\pi}{4}\right) = \left(6 \cos\left(\frac{\pi}{4}\right), 6 \sin\left(\frac{\pi}{4}\right), 7\right) = \left(6 \cdot \frac{1}{\sqrt{2}}, 6 \cdot \frac{1}{\sqrt{2}}, 7\right) = \left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \] Since this matches the point \( P\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \), we confirm the verification is correct. Now, we will find the unit tangent vector \( \mathbf{T}\left(t\right) \) at \( t=\frac{\pi}{4} \): Carrying out the calculation: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{6}\langle-6 \sin \left(\frac{\pi}{4}\right), 6 \cos \left(\frac{\pi}{4}\right), 0\rangle = \frac{1}{6}\langle-6 \cdot \frac{1}{\sqrt{2}}, 6 \cdot \frac{1}{\sqrt{2}}, 0\rangle = \langle -\sqrt{2}, \sqrt{2}, 0 \rangle \] Finally, normalizing the tangent vector gives us: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{(-\sqrt{2})^2 + (\sqrt{2})^2}} \langle -\sqrt{2}, \sqrt{2}, 0 \rangle = \frac{1}{2} \langle -\sqrt{2}, \sqrt{2}, 0 \rangle \] Thus, the unit tangent vector \( \mathbf{T}\left(\frac{\pi}{4}\right) \) is: \[ \mathbf{T}\left(\frac{\pi}{4}\right) = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad