Question
upstudy study bank question image url

f) \( (3 x+5)(3 x-5)= \) g) \( (2 x-4)(2 x+4)= \) h) \( (x+2)^{3}= \) i) \( (x-4)^{3}= \)

Ask by Donnelly Chang. in Mexico
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

f) \( (3x + 5)(3x - 5) = 9x^{2} - 25 \) g) \( (2x - 4)(2x + 4) = 4x^{2} - 16 \) h) \( (x + 2)^{3} = x^{3} + 6x^{2} + 12x + 8 \) i) \( (x - 4)^{3} = x^{3} - 12x^{2} + 48x - 64 \)

Solution

Simplify the expression by following steps: - step0: Evaluate the power: \(\left(x-4\right)^{3}\) - step1: Expand the expression: \(x^{3}+3x^{2}\left(-4\right)+3x\left(-4\right)^{2}+\left(-4\right)^{3}\) - step2: Calculate: \(x^{3}-12x^{2}+48x-64\) Expand the expression \( (2 x-4)(2 x+4) \) Simplify the expression by following steps: - step0: Calculate: \(\left(2x-4\right)\left(2x+4\right)\) - step1: Multiply the expression: \(2^{2}\left(x^{2}-4\right)\) - step2: Rearrange the terms: \(2^{2}x^{2}-2^{4}\) - step3: Evaluate the power: \(4x^{2}-16\) Expand the expression \( (x+2)^{3} \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(x+2\right)^{3}\) - step1: Expand the expression: \(x^{3}+3x^{2}\times 2+3x\times 2^{2}+2^{3}\) - step2: Calculate: \(x^{3}+6x^{2}+12x+8\) Expand the expression \( (3 x+5)(3 x-5) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(3x+5\right)\left(3x-5\right)\) - step1: Simplify the product: \(\left(3x\right)^{2}-5^{2}\) - step2: Evaluate the power: \(9x^{2}-25\) Aquí están las soluciones a las expresiones solicitadas: f) \( (3x + 5)(3x - 5) = 9x^{2} - 25 \) g) \( (2x - 4)(2x + 4) = 4x^{2} - 16 \) h) \( (x + 2)^{3} = x^{3} + 6x^{2} + 12x + 8 \) i) \( (x - 4)^{3} = x^{3} - 12x^{2} + 48x - 64 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve these expressions, we can use the identities for the difference of squares and the binomial expansion. For the first expression, \( (3 x+5)(3 x-5) \) is in the form \( (a+b)(a-b) \), which simplifies to \( a^2 - b^2 \). So, it becomes \( (3x)^2 - (5)^2 = 9x^2 - 25 \). The second expression, \( (2 x-4)(2 x+4) \), follows the same pattern: \( (a-b)(a+b) \). Here, \( a = 2x \) and \( b = 4 \), so it simplifies to \( (2x)^2 - (4)^2 = 4x^2 - 16 \). For \( (x+2)^3 \), we can use the binomial theorem or the formula for cubes: \( (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \). Thus, it becomes \( x^3 + 3(2)(x^2) + 3(2^2)(x) + 2^3 = x^3 + 6x^2 + 12x + 8 \). Finally, for \( (x-4)^3 \), it follows the same principle: \( (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \). So, it simplifies to \( x^3 - 3(4)(x^2) + 3(4^2)(x) - 4^3 = x^3 - 12x^2 + 48x - 64 \). Now you have the simplified forms: f) \( 9x^2 - 25 \) g) \( 4x^2 - 16 \) h) \( x^3 + 6x^2 + 12x + 8 \) i) \( x^3 - 12x^2 + 48x - 64 \)

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy